а) получение оснований .
1) Общим методом получения оснований является реакция обмена, с помощью которой могут быть получены как нерастворимые, так и растворимые основания:
CuSO 4 + 2 КОН = Сu(ОН) 2 + K 2 SO 4 ,
К 2 СО 3 + Ва(ОН) 2 = 2КОН + ВаСО 3 .
При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.
2) Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой:
2Li + 2Н 2 О = 2LiOH + H 2 ,
SrO + H 2 O = Sr(OH) 2 .
3) Щелочи в технике обычно получают электролизом водных растворов хлоридов:
б) химические свойства оснований .
1) Наиболее характерной реакцией оснований является их взаимодействие с кислотами - реакция нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:
NaOH + HNO 3 = NaNO 3 + H 2 O,
Cu(OH) 2 + H 2 SO 4 = СuSО 4 + 2 H 2 O .
2) Выше было показано, как щелочи взаимодействуют с кислотными и амфотерными оксидами.
3) При взаимодействии щелочей с растворимыми солями образуется новая соль и новое основание. Такая реакция идет до конца только в том случае, когда хотя бы одно из полученных веществ выпадает в осадок.
FeCl 3 + 3 KOH = Fe(OH) 3 + 3 KCl
4) При нагревании большинство оснований, за исключением гидроксидов щелочных металлов, разлагаются на соответствующий оксид и воду:
2 Fе(ОН) 3 = Fе 2 О 3 + 3 Н 2 О,
Са(ОН) 2 = СаО + Н 2 О.
КИСЛОТЫ – сложные вещества, молекулы которых состоят из одного или нескольких атомов водорода и кислотного остатка. Состав кислот может быть выражен общей формулой Н х А, где А – кислотный остаток. Атомы водорода в кислотах способны замещаться или обмениваться на атомы металлов, при этом образуются соли.
Если кислота содержит один такой атом водорода, то это одноосновная кислота (HCl - соляная, HNO 3 - азотная, HСlO - хлорноватистая, CH 3 COOH - уксусная); два атома водорода - двухосновные кислоты: H 2 SO 4 – серная, H 2 S - сероводородная; три атома водорода - трехосновные: H 3 PO 4 – ортофосфорная, H 3 AsO 4 – ортомышьяковая.
В зависимости от состава кислотного остатка кислоты подразделяют на бескислородные (H 2 S, HBr, HI) и кислородсодержащие (H 3 PO 4 , H 2 SO 3 , H 2 CrO 4). В молекулах кислородсодержащих кислот атомы водорода связаны через кислород с центральным атомом: Н – О – Э. Названия бескислородных кислот образуются из корня русского названия неметалла, соединительной гласной -о - и слова «водородная» (H 2 S – сероводородная). Названия кислородсодержащим кислотам дают так: если неметалл (реже металл), входящий в состав кислотного остатка, находится в высшей степени окисления, то к корню русского названия элемента добавляют суффиксы -н- , -ев-, или -ов- и далее окончание -ая- (H 2 SO 4 – серная, H 2 CrO 4 - хромовая). Если степень окисления центрального атома ниже, то используется суффикс -ист- (H 2 SO 3 – сернистая). Если неметалл образует ряд кислот, используют и другие суффиксы (HClO – хлорноватист ая, HClO 2 – хлорист ая, HClO 3 – хлорноват ая, HClO 4 – хлорн ая).
С
точки зрения теории электролитической
диссоциации, кислоты – электролиты,
диссоциирующие в водном растворе с
образованием в качестве катионов только
ионов водорода:
Н х А хН + +А х-
Наличием Н + -ионов обусловлено изменение окраски индикаторов в растворах кислот: лакмус (красный), метилоранж (розовый).
Получение и свойства кислот
а) получение кислот .
1) Бескислородные кислоты могут быть получены при непосредственном соединении неметаллов с водородом и последующим растворением соответствующих газов в воде:
2) Кислородсодержащие кислоты нередко могут быть получены при взаимодействии кислотных оксидов с водой.
3) Как бескислородные, так и кислородсодержащие кислоты можно получить по реакциям обмена между солями и другими кислотами:
ВаВr 2 + H 2 SO 4 = ВаSО 4 + 2 HBr ,
CuSO 4 + H 2 S = H 2 SO 4 + CuS ,
FeS+ H 2 SO 4 (paзб.) = H 2 S + FeSO 4 ,
NaCl (тв.)+ Н 2 SO 4 (конц.) = HCl + NaHSO 4 ,
AgNO 3 + HCl = AgCl + HNO 3 ,
4) В ряде случаев для получения кислот могут быть использованы окислительно-восстановительные реакции:
3Р + 5НNО 3 + 2Н 2 О = 3Н 3 РO 4 + 5NO
б) химические свойства кислот .
1) Кислоты взаимодействуют с основаниями и амфотерными гидроксидами. При этом практически нерастворимые кислоты (H 2 SiO 3 , H 3 BO 3) могут реагировать только с растворимыми щелочами.
H 2 SiO 3 +2NaOH=Na 2 SiO 3 +2H 2 O
2) Взаимодействие кислот с основными и амфотерными оксидами рассмотрено выше.
3) Взаимодействие кислот с солями – это обменная реакция с образованием соли и воды. Эта реакция идет до конца, если продуктом реакции является нерастворимое или летучее вещество, либо слабый электролит.
Ni 2 SiO 3 +2HCl=2NaCl+H 2 SiO 3
Na 2 CO 3 +H 2 SO 4 =Na 2 SO 4 +H 2 O+CO 2
4) Взаимодействие кислот с металлами – окислительно-восстановительный процесс. Восстановитель – металл, окислитель – ионы водорода (кислоты-неокислители: HCl, HBr, HI, H 2 SO 4(разбавл), H 3 PO 4) или анион кислотного остатка (кислоты-окислители: H 2 SO 4(конц) , HNO 3(конц и разб)). Продуктами реакции взаимодействия кислот-неокислителей с металлами, стоящими в ряду напряжений до водорода, являются соль и газообразный водород:
Zn+H 2 SO 4(разб) =ZnSO 4 +H 2
Zn+2HCl=ZnCl 2 +H 2
Кислоты окислители взаимодействуют почти со всеми металлами, включая и малоактивные (Cu, Hg, Ag), при этом образуются продукты восстановления аниона кислоты, соль и вода:
Сu + 2Н 2 SO 4 (конц.) = CuSO 4 + SO 2 + 2 Н 2 O,
Рb + 4НNО 3(конц) = Pb(NO 3) 2 +2NO 2 + 2Н 2 O
АМФОТЕРНЫЕ ГИДРОКСИДЫ проявляют кислотно-основную двойственность: с кислотами они реагируют как основания:
2Cr(OH) 3 + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 6H 2 O,
а с основаниями – как кислоты:
Cr(OH) 3 + NaOH = Na (реакция протекает в растворе щелочи);
Сr(OH) 3 +NaOH =NaCrO 2 +2H 2 O (реакция протекает между твердыми веществами при сплавлении).
С сильными кислотами и основаниями амфотерные гидроксиды образуют соли.
Как и другие нерастворимые гидроксиды, амфотерные гидроксиды разлагаются при нагревании на оксид и воду:
Be(OH) 2 = BeO+H 2 O.
СОЛИ – ионные соединения, состоящие из катионов металлов (или аммония) и анионов кислотных остатков. Любую соль можно рассматривать как продукт реакции нейтрализации основания кислотой. В зависимости от того, в каком соотношении взяты кислота и основание, получаются соли: средние (ZnSO 4 , MgCl 2) – продукт полной нейтрализации основания кислотой, кислые (NaHCO 3 , KH 2 PO 4) – при избытке кислоты, основные (CuOHCl, AlOHSO 4) – при избытке основания.
Названия солей по международной номенклатуре образуют из двух слов: названия аниона кислоты в именительном падеже и катиона металла в родительном с указанием степени его окисления, если она переменная, римской цифрой в скобках. Например: Cr 2 (SO 4) 3 – сульфат хрома (III), AlCl 3 – хлорид алюминия. Названия кислых солей образуют добавлением слова гидро- или дигидро- (в зависимости от числа атомов водорода в гидроанионе): Ca(HCO 3) 2 – гидрокарбонат кальция, NaH 2 PO 4 - дигидрофосфат натрия. Названия основных солей образуют добавлением слова гидроксо- или дигидроксо- : (AlOH)Cl 2 – гидроксохлорид алюминия, 2 SO 4 - дигидроксосульфат хрома(III).
Получение и свойства солей
а) химические свойства солей .
1) Взаимодействие солей с металлами – окислительно-восстановительный процесс. При этом металл, стоящий левее в электрохимическом ряду напряжений, вытесняет последующие из растворов их солей:
Zn+CuSO 4 =ZnSO 4 +Cu
Щелочные и щелочноземельные металлы не используют для восстановления других металлов из водных растворов их солей, поскольку они взаимодействуют с водой, вытесняя водород:
2Na+2H 2 O=H 2 +2NaOH.
2) Взаимодействие солей с кислотами и щелочами было рассмотрено выше.
3) Взаимодействие солей между собой в растворе протекают необратимо лишь в том случае, если один из продуктов – малорастворимое вещество:
BaCl 2 +Na 2 SO 4 =BaSO 4 +2NaCl.
4) Гидролиз солей - обменное разложение некоторых солей водой. Гидролиз солей будет подробно рассмотрен в теме «электролитическая диссоциация».
б) способы получения солей .
В лабораторной практике обычно используют следующие способы получения солей, основанные на химических свойствах различных классов соединений и простых веществ:
1) Взаимодействие металлов с неметаллами:
Cu+Cl 2 =CuCl 2 ,
2) Взаимодействие металлов с растворами солей:
Fe+CuCl 2 =FeCl 2 +Cu.
3) Взаимодействие металлов с кислотами:
Fe+2HCl=FeCl 2 +H 2 .
4) Взаимодействие кислот с основаниями и амфотерными гидроксидами:
3HCl+Al(OH) 3 =AlCl 3 +3H 2 O.
5) Взаимодействие кислот с основными и амфотерными оксидами:
2HNO 3 +CuO=Cu(NO 3) 2 +2H 2 O.
6) Взаимодействие кислот с солями:
HCl+AgNO 3 =AgCl+HNO 3 .
7) Взаимодействие щелочей с солями в растворе:
3KOH+FeCl 3 =Fe(OH) 3 +3KCl.
8) Взаимодействие двух солей в растворе:
NaCl+AgNO 3 =NaNO 3 +AgCl.
9) Взаимодействие щелочей с кислотными и амфотерными оксидами:
Ca(OH) 2 +CO 2 =CaCO 3 +H 2 O.
10) Взаимодействие оксидов различного характера друг с другом:
CaO+CO 2 =CaCO 3 .
Соли встречаются в природе в виде минералов и горных пород, в растворенном состоянии в воде океанов и морей.
Разделение оснований на группы по различным признакам представлено в таблице 11.
Таблица 11
Классификация оснований
Все основания, кроме раствора аммиака в воде, представляют собой твёрдые вещества, имеющие различную окраску. Например, гидроксид кальция Са(ОН) 2 белого цвета, гидроксид меди (II) Сu(ОН) 2 голубого цвета, гидроксид никеля (II) Ni(OH) 2 зелёного цвета, гидроксид железа (III) Fe(OH) 3 красно-бурого цвета и т. д.
Водный раствор аммиака NH 3 Н 2 O, в отличие от других оснований, содержит не катионы металла, а сложный однозарядный катион аммония NH - 4 и существует только в растворе (этот раствор вам известен под названием нашатырного спирта). Он легко разлагается на аммиак и воду:
Однако, какими бы разными ни были основания, все они состоят из ионов металла и гидроксогрупп, число которых равно степени окисления металла.
Все основания, и в первую очередь щёлочи (сильные электролиты), образуют при диссоциации гидроксид-ионы ОН - , которые и обусловливают ряд общих свойств: мылкость на ощупь, изменение окраски индикаторов (лакмуса, метилового оранжевого и фенолфталеина), взаимодействие с другими веществами.
Типичные реакции оснований
Первая реакция (универсальная) была рассмотрена в § 38.
Лабораторный опыт № 23
Взаимодействие щелочей с кислотами
-
Запишите два молекулярных уравнения реакций, сущность которых выражается следующим ионным уравнением:
H + + ОН - = Н 2 O.
Проведите реакции, уравнения которых вы составили. Вспомните, какие вещества (кроме кислоты и щёлочи) необходимы для наблюдения за этими химическими реакциями.
Вторая реакция протекает между щелочами и оксидами неметаллов, которым соответствуют кислоты, например,
Соответствует
и т.д.
При взаимодействии оксидов с основаниями образуются соли соответствующих кислот и вода:
Рис. 141.
Взаимодействие щёлочи с оксидом неметалла
Лабораторный опыт № 24
Взаимодействие щелочей с оксидами неметаллов
Повторите опыт, который вы проделывали раньше. В пробирку налейте 2-3 мл прозрачного раствора известковой воды.
Поместите в неё соломинку для сока, которая выполняет роль газоотводной трубки. Осторожно пропускайте через раствор выдыхаемый воздух. Что наблюдаете?
Запишите молекулярное и ионное уравнения реакции.
Рис. 142.
Взаимодействие щелочей с солями:
а - с образованием осадка; б - с образованием газа
Третья реакция является типичной реакцией ионного обмена и протекает только в том случае, если в результате образуется осадок или выделяется газ, например:
Лабораторный опыт № 25
Взаимодействие щелочей с солями
-
В трёх пробирках слейте попарно по 1-2 мл растворов веществ: 1-я пробирка - гидроксида натрия и хлорида аммония; 2-я пробирка - гидроксида калия и сульфата железа (III); 3-я пробирка - гидроксида натрия и хлорида бария.
Нагрейте содержимое 1-й пробирки и определите по запаху один из продуктов реакции.
Сформулируйте вывод о возможности взаимодействия щелочей с солями.
Нерастворимые основания разлагаются при нагревании на оксид металла и воду, что нехарактерно для щелочей, например:
Fe(OH) 2 = FeO + Н 2 O.
Лабораторный опыт № 26
Получение и свойства нерастворимых оснований
В две пробирки налейте по 1 мл раствора сульфата или хлорида меди (II). В каждую пробирку добавьте по 3-4 капли раствора гидроксида натрия. Опишите образовавшийся гидроксид меди (II).
Примечание . Оставьте пробирки с полученным гидроксидом меди (II) для проведения следующих опытов.
Составьте молекулярное и ионные уравнения проведённой реакции. Укажите тип реакции по признаку «число и состав исходных веществ и продуктов реакции».
Добавьте в одну из пробирок с полученным в предыдущем опыте гидроксидом меди (II) 1-2 мл соляной кислоты. Что наблюдаете?
Используя пипетку, поместите 1-2 капли полученного раствора на стеклянную или фарфоровую пластину и, используя тигельные щипцы, осторожно выпарьте его. Рассмотрите образующиеся кристаллы. Отметьте их цвет.
Составьте молекулярное и ионные уравнения проведённой реакции. Укажите тип реакции по признаку «число и состав исходных веществ и продуктов реакции», «участие катализатора» и «обратимость химической реакции».
Нагрейте одну из пробирок с полученным ранее или выданным учителем гидроксидом меди () (рис. 143). Что наблюдаете?
Рис. 143.
Разложение гидроксида меди (II) при нагревании
Составьте уравнение проведённой реакции, укажите условие её протекания и тип реакции по признакам «число и состав исходных веществ и продуктов реакции», «выделение или поглощение теплоты» и «обратимость химической реакции».
Ключевые слова и словосочетания
- Классификация оснований.
- Типичные свойства оснований: взаимодействие их с кислотами, оксидами неметаллов, солями.
- Типичное свойство нерастворимых оснований: разложение при нагревании.
- Условия протекания типичных реакций оснований.
Работа с компьютером
- Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
- Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.
Вопросы и задания
ЦЕЛИ УРОКА:
- Образовательная : изучить основания, их классификацию, способы получения и свойства.
- Развивающая : способствовать закреплению знаний о классах неорганических соединений, развить и углубить представление о гидроксидах.
- Воспитательная: привить интерес к предмету химии, соблюдать правила ТБ при обращении. с основаниями (щелочами).
Оборудование: мультимедиа, компьютер,задания, ПСХЭ, таблица растворимости, щелочи, хлорид меди, индикаторы.
Ход урока
Организационный момент. Проверка домашнего задания.
I. Мотивация урока.
Учитель: Чем можно заменить шампунь, мыло?
Щелок - это консистенция из золы, настоянной на воде. Щелок в экопоселении используется для купания и стирки. В отличие от различных продающихся в магазинах моющих средств, это полностью природное вещество! Мытье волос золой - одно из старинных средств, применявшихся нашими прабабушками. Берёзовая зола - обладает щелочными свойствами вследствие содержания поташа.
II. Объявление темы урока. Целеполагание.
Учитель.Тема урока: "Основания, их классификация и свойства".
III. Актуализация знаний.
Гидроксиды - соединения, состоящие из атомов металлов и гидроксид-ионов.
Основания с точки зрения ТЭД - это электролиты, которые в водных растворах диссоциируют на катионы металла и гидроксид - анионы.
NaOH <-> Na + + OH -
Ba(OH) 2 <-> Ba +2 + 2OH -
IV. Изучение нового материала. Осознание и осмысление.
Учитель. Изучим классификацию оснований:
а) По растворимости в воде: растворимые и нерастворимые
б) По кислотности: однокислотные и двухкислотные
в) По степени электролитической диссоциации: сильные и слабые
Если в соль добавить щёлочь,
На пробирку посмотреть -
Синий выпадет осадок -
Основания- гидроксида меди II.
- Fe(OH) 3 красно-бурый,
- Сr(OH) 3 - cеро-зеленый,
- Co(OH) 2 - темно-фиолетовый,
- Ni(OH) 2 - светло-зеленый.
Учитель. Посмотрите на физические свойства хозяйственного мыло. Щелочи так же мягкие и мылкие на ощупь, изменяют окраску индикаторов. Проведём эксперимент:
Фенолфталеин (бесцв.) + щёлочь -> малиновая окраска
Лакмус (фиолет.) + щёлочь -> синяя окраска
NaOH и КОН - сильные щелочи, при обращении с которыми необходимо соблюдать ТБ.
3. Способы получения оснований
А) Активный металл и вода
Б) основной оксид и вода
(Самостоятельно написать уравнения химических реакций)
4. Рассмотрим химические свойства оснований
А) с кислотами
Б) с кислотными оксидами
В) с амфотерными оксидами
Г) с растворимыми солями
Д) изменяют цвет индикаторов. (Дем. опыт)
А). Основание + кислота > соль + вода
(реакция обмена)
2NaOH + H 2 SO 4 -> Na 2 SO4 + 2H 2 O
OH - + H + -> H 2 O
Cu(OH) 2 + 2HCl -> CuCl 2 + 2H 2 O
Cu(OH) 2 + 2H + -> Cu +2 + 2H 2 O
Б) Основание + кислотный оксид -> соль + вода (реакция обмена)
Р 2 О 5 + 6КОН -> 2К 3 РО 4 + 3Н 2 О
Р 2 О 5 + 6OH - -> 2РО 4 3- + 3Н 2 О
2NaOH + N 2 O 5 -> 2NaNO 3 + Н 2 О
2OH - + N 2 O 5 -> 2NO 3 - + Н 2 О
Учитель. Взаимодействие щелочей с солями сопровождается образованием новой соли и нового основания и подчиняется закону Бертолле. Закон Бертолле основной закон направления обратимых хим. взаимодействий, который можно формулировать так: всякий химический процесс протекает в сторону максимального образования тех продуктов, которые во время реакции выходят из сферы взаимодействия.
В). Щёлочь + соль > новое основание + новая соль (реакция обмена)
Г). Нерастворимое основание -> оксид металла + вода (при t°С)
(реакция разложения)
Fe(OH) 2 -> FeO + H 2 O
Cu(OH) 2 -> CuO + H 2 O
Д) Изменяют цвет индикатор
5. ОСОБЫЕ СВОЙСТВА ОСНОВАНИЙ
1. Качественная реакция на Са(ОН) 2 - помутнение известковой воды:
Качественные реакции на ион Ва +2:
V. Закрепление изученного материала
Учитель. Для закрепления материала выполним задания.
1. По таблице растворимости солей, кислот и оснований в воде, найдите растворимые,труднорастворимые и малорастворимые основания.
2. Составьте молекулярные уравнения реакций:
3. Напишите уравнения реакций, характеризующие химические свойства гидроксида калия.
Учитель.Выполните тестовые задания:
1-вариант:
1. Формулы только оснований
приведены в ряду
а) Na 2 CO 3 , NaOH, NaCl
б) KNO 3 , HNO 3 , KОН
в) KОН, Mg(OH) 2 , Cu(OH) 2
г) HCl, BaCl 2 , Ba(OH) 2
2. Формулы только щелочей
приведены в ряду
а) Fe(OH) 3 , NaOH, Ca(OH) 2
б) KOH, LiOH, NaOH
в) KOH, Mg(OH) 2 , Cu(OH) 2
г) Al(OH) 3 , Fe(OH) 2 ,
Ba(OH) 2
3. Из указанных соединений
нерастворимым в воде основанием является
а) NaOH
б) Ва(ОН) 2
в) Fe(OH) 2
г) KOH
4. Из указанных соединений
щелочью является
а) Fe(OH) 2
б) LiOH
в) Mg(OH) 2
г) Cu(OH) 2
2-Вариант:
1. Металл, который, реагируя
с водой, образует щелочь, - это
а) железо
б) медь
в) калий
г) алюминий
2. Оксид, который при
взаимодействии с водой образует щелочь, - это
а) оксид алюминия
б) оксид лития
в) оксид свинца(II)
г) оксид марганца(II)
3. При взаимодействии
основного оксида с водой образуется основание
а) Аl(ОН) 3
б) Ва(ОН) 2
в) Cu(ОН) 2
г) Fe(OH) 3
4. Из перечисленных
уравнений химических реакций выберите уравнение
реакции обмена.
а) 2H 2 O = 2H 2 + O 2
б) HgCl 2 + Fe = FeCl 2 + Hg
в) ZnCl 2 + 2KOH = Zn(OH) 2 + 2KCl
г) CaO + CO 2 = CaCO 3
Ответы: 1-вариант: 1-В, 2-Б, 3-В, 4-Б.; 2-вариант:
1-В,2-Б,3-Б,4-В.
VI. Подведение итогов урока.
Учитель. Какой общий вывод можно сделать, изучив состав и свойства оснований?
Учащиеся делают вывод, что свойства оснований зависят от их строения, и записывают его в тетрадь.
Выставление оценок.
Домашнее задание .с.217-218 №1-5
3. Гидроксиды
Среди многоэлементных соединений важную группу составляют гидроксиды. Некоторые из них проявляют свойства оснований (основные гидроксиды) - NaOH , Ba (OH ) 2 и т.п.; другие проявляют свойства кислот (кислотные гидроксиды) - HNO 3 , H 3 PO 4 и другие. Существуют и амфотерные гидроксиды, способные в зависимости от условий проявлять как свойства оснований, так и свойства кислот - Zn (OH ) 2 , Al (OH ) 3 и т.п.
3.1. Классификация, получение и свойства оснований
Основаниями (основными гидроксидами) с позиции теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов ОН - .
По современной номенклатуре их принято называть гидроксидами элементов с указанием, если необходимо, валентности элемента (римскими цифрами в скобках): КОН - гидроксид калия, гидроксид натрия NaOH , гидроксид кальция Ca (OH ) 2 , гидроксид хрома (II ) - Cr (OH ) 2 , гидроксид хрома (III ) - Cr (OH ) 3 .
Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами - Li , Na , K , Cs , Rb , Fr , Ca , Sr , Ba и поэтому называемые щелочами) и нерастворимые в воде . Основное различие между ними заключается в том, что концентрация ионов ОН - в растворах щелочей достаточно высока, для нерастворимых же оснований она определяется растворимостью вещества и обычно очень мала. Тем не менее, небольшие равновесные концентрации иона ОН - даже в растворах нерастворимых оснований определяют свойства этого класса соединений.
По числу гидроксильных групп (кислотность) , способных замещаться на кислотный остаток, различают:
Однокислотные основания - KOH , NaOH ;
Двухкислотные основания - Fe (OH ) 2 , Ba (OH ) 2 ;
Трехкислотные основания - Al (OH ) 3 , Fe (OH ) 3 .
Получение оснований
1. Общим методом получения оснований является реакция обмена, с помощью которой могут быть получены как нерастворимые, так и растворимые основания:
CuSO 4 + 2KOH = Cu(OH) 2 ↓ + K 2 SO 4 ,
K 2 SO 4 + Ba(OH) 2 = 2KOH + BaCO 3 ↓ .
При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.
При получении нерастворимых в воде оснований, обладающих амфотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например,
AlCl 3 + 3KOH = Al(OH) 3 + 3KCl,
Al(OH) 3 + KOH = K.
В подобных случаях для получения гидроксидов используют гидроксид аммония, в котором амфотерные оксиды не растворяются:
AlCl 3 + 3NH 4 OH = Al(OH) 3 ↓ + 3NH 4 Cl.
Гидроксиды серебра, ртути настолько легко распадаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:
2AgNO 3 + 2KOH = Ag 2 O ↓ + H 2 O + 2KNO 3 .
2. Щелочи в технике обычно получают электролизом водных растворов хлоридов:
2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2 .
(суммарная реакция электролиза)
Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой:
2 Li + 2 H 2 O = 2 LiOH + H 2 ,
SrO + H 2 O = Sr (OH ) 2 .
Химические свойства оснований
1. Все нерастворимые в воде основания при нагревании разлагаются с образованием оксидов:
2 Fe (OH ) 3 = Fe 2 O 3 + 3 H 2 O ,
Ca (OH ) 2 = CaO + H 2 O .
2. Наиболее характерной реакцией оснований является их взаимодействие с кислотами - реакция нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:
NaOH + HNO 3 = NaNO 3 + H 2 O ,
Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O.
3. Щелочи взаимодействуют с кислотными и с амфотерными оксидами:
2KOH + CO 2 = K 2 CO 3 + H 2 O,
2NaOH + Al 2 O 3 = 2NaAlO 2 + H 2 O.
4. Основания могут вступать в реакцию с кислыми солями:
2NaHSO 3 + 2KOH = Na 2 SO 3 + K 2 SO 3 +2H 2 O,
Ca(HCO 3) 2 + Ba(OH) 2 = BaCO 3 ↓ + CaCO 3 + 2H 2 O.
Cu(OH) 2 + 2NaHSO 4 = CuSO 4 + Na 2 SO 4 +2H 2 O.
5. Необходимо особенно подчеркнуть способность растворов щелочей реагировать с некоторыми неметаллами (галогенами, серой, белым фосфором, кремнием):
2 NaOH + Cl 2 = NaCl + NaOCl + H 2 O (на холоду),
6 KOH + 3 Cl 2 = 5 KCl + KClO 3 + 3 H 2 O (при нагревании),
6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O,
3KOH + 4P + 3H 2 O = PH 3 + 3KH 2 PO 2 ,
2NaOH + Si + H 2 O = Na 2 SiO 3 + 2H 2 .
6. Кроме того, концентрированные растворы щелочей при нагревании способны растворять также и некоторые металлы (те, соединения которых обладают амфотерными свойствами):
2Al + 2NaOH + 6H 2 O = 2Na + 3H 2 ,
Zn + 2KOH + 2H 2 O = K 2 + H 2 .
Растворы щелочей имеют рН > 7 (щелочная среда), изменяют окраску индикаторов (лакмус - синяя, фенолфталеин - фиолетовая).
М.В. Андрюxoва, Л.Н. Бopoдина
Однокислотные (NaOH , КОН, NH 4 OH и др.);
Двухкислотные (Са(ОН) 2 , Cu(OH) 2 , Fe(OH) 2 ;
Трехкислотные (Ni(OH) 3 , Со(ОН) 3 , Мn(ОН) 3 .
Классификация по растворимости в воде и степени ионизации:
Растворимые в воде сильные основания,
например:
щелочи - гидроксиды щелочных и щелочноземельных металлов LiOH - гидроксид лития, NaOH - гидроксид натрия (едкий натр), КОН - гадроксид калия (едкое кали), Ва(ОН) 2 - гидроксид бария;
Нерастворимые в воде сильные основания,
например:
Сu(ОН) 2 - гидроксид меди (II), Fe(OH) 2 - гидроксид железа (II), Ni(OH) 3 - гидроксид никеля (III).
Химические свойства
1. Действие на индикаторы
Лакмус - синий;
Метилоранж - жёлтый,
Фенолфталеин - малиновый.
2. Взаимодействие с кислотными оксидами
2KOH + CO 2 = K 2 CO 3 + H 2 O
KOH + CO 2 = KHCO 3
3. Взаимодействие с кислотами (реакция нейтрализации)
NaOH + HNO 3 = NaNO 3 + H 2 O; Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O
4. Обменная реакция с солями
Ba(OH) 2 + K 2 SO 4 = 2KOH + BaSO 4
3KOH + Fe(NO 3) 3 = Fe(OH) 3 + 3KNO 3
5. Термический распад
Cu(OH) 2 t = CuO + H 2 O; 2 CuOH = Cu 2 O + Н 2 O
2Со(ОН) 3 = Со 2 O 3 + ЗН 2 O; 2АgОН = Аg 2 O + Н 2 O
6. Гидроксиды, в которых d-металлы имеют низкие с. о., способны окисляться кислородом воздуха,
например:
4Fe(OH) 2 + O 2 + 2Н 2 O = 4Fe(OH) 3
2Мn(OН) 2 + O 2 + 2Н 2 O = 2Мn(ОН) 4
7. Растворы щелочей взаимодействуют c амфотерными гидроксидами:
2КОН + Zn(OH) 2 = К 2
2КОН + Al 2 O 3 + ЗН 2 O = 2К
8. Растворы щелочей взаимодействуют с металлами, образующими амфотерные оксиды игидроксиды (Zn , AI и др.),
например:
Zn + 2 NaOH +2Н 2 O = Na 2 + Н 2
2AI +2КOН + 6Н 2 O= 2КAl(ОН) 4 ] + 3H 2
9. В растворах щелочей некоторые неметаллы диспропорционируют,
например:
Cl 2 + 2NaOH = NaCl + NaCIO + Н 2 O
3S+ 6NaOH = 2Na 2 S+ Na 2 SO 3 + 3H 2 O
4P+ 3KOH + 3H 2 O = PH 3 + 3KH 2 PO 2
10. Растворимые основания широко используются в реакциях щелочного гидролиза различных органических соединений (галогенопроизводных углеводородов, сложных эфиров, жиров и др.),
например:
C 2 H 5 CI + NaOH = С 2 Н 5 ОН + NaCl
Способы получения щелочей и нерастворимых оснований
1. Реакции активных металлов (щелочных и щелочноземельных металлов) с водой:
2Na + 2H 2 O = 2 NaOH + H 2
Ca + 2H 2 O = Ca(OH) 2 + H 2
2. Взаимодействие оксидов активных металлов с водой:
BaO + H 2 O = Ba(OH) 2
3. Электролиз водных растворов солей:
2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2
CaCI 2 + 2Н 2 O = Са(ОН) 2 +Н 2 + Cl 2
4. Осаждение из растворов соответствующих солей щелочами:
CuSO 4 + 2NaOH = Cu(OH) 2 + Na 2 SO 4
FeCI 3 + 3KOH = Fe(OH) 3 + 3KCI