Урок и презентация на тему: "Системы неравенств. Примеры решений"
Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.
Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Интерактивное учебное пособие для 9 класса "Правила и упражнения по геометрии"
Электронное учебное пособие "Понятная геометрия" для 7-9 классов
Система неравенств
Ребята, вы изучили линейные и квадратные неравенства, научились решать задачи на эти темы. Теперь давайте перейдем к новому понятию в математике – система неравенств. Система неравенств похожа на систему уравнений. Вы помните системы уравнений? Системы уравнений вы изучали в седьмом классе, постарайтесь вспомнить, как вы их решали.Введем определение системы неравенств.
Несколько неравенств с некоторой переменой х образуют систему неравенств, если нужно найти все значения х, при которых каждое из неравенств образует верное числовое выражение.
Любое значение x, при которых каждое неравенство принимает верное числовое выражение, является решением неравенства. Также может называться и частным решением.
А что есть частное решение? Например, в ответе мы получили выражение х>7. Тогда х=8, или х=123, или какое-либо другое число большее семи – частное решение, а выражение х>7 – общее решение. Общее решение образуется множеством частных решений.
Как мы объединяли систему уравнений? Правильно, фигурной скобкой, так вот с неравенствами поступают также. Давайте рассмотрим пример системы неравенств: $\begin{cases}x+7>5\\x-3
Если система неравенств состоит из одинаковых выражений, например, $\begin{cases}x+7>5\\x+7
Так, что же значит: найти решение системы неравенств?
Решение неравенства – это множество частных решений неравенства, которые удовлетворяют сразу обоим неравенствам системы.
Общий вид системы неравенств запишем в виде $\begin{cases}f(x)>0\\g(x)>0\end{cases}$
Обозначим $Х_1$ – общее решение неравенства f(x)>0.
$Х_2$ – общее решение неравенства g(x)>0.
$Х_1$ и $Х_2$ - это множество частных решений.
Решением системы неравенств будут числа, принадлежащие, как $Х_1$, так и $Х_2$.
Давайте вспомним операции над множествами. Как нам найти элементы множества, принадлежащие сразу обоим множествам? Правильно, для этого есть операция пересечения. Итак, решением нашего неравенство будет множество $А= Х_1∩ Х_2$.
Примеры решений систем неравенств
Давайте посмотрим примеры решения систем неравенств.Решите систему неравенств.
а) $\begin{cases}3x-1>2\\5x-10 b) $\begin{cases}2x-4≤6\\-x-4
Решение.
а) Решим каждое неравенство отдельно.
$3х-1>2; \; 3x>3; \; x>1$.
$5x-10
Отметим наши промежутки на одной координатной прямой.
Решением системы будет отрезок пересечения наших промежутков. Неравенство строгое, тогда отрезок будет открытым.
Ответ: (1;3).
Б) Также решим каждое неравенство отдельно.
$2x-4≤6; 2x≤ 10; x ≤ 5$.
$-x-4 -5$.
Решением системы будет отрезок пересечения наших промежутков. Второе неравенство строгое, тогда отрезок будет открытым слева.
Ответ: (-5; 5].
Давайте обобщим полученные знания.
Допустим, необходимо решить систему неравенств:
$\begin{cases}f_1 (x)>f_2 (x)\\g_1 (x)>g_2 (x)\end{cases}$.
Тогда, интервал ($x_1; x_2$) – решение первого неравенства.
Интервал ($y_1; y_2$) – решение второго неравенства.
Решение системы неравенств – есть пересечение решений каждого неравенства.
Системы неравенств могут состоять из неравенств не только первого порядка, но и любых других видов неравенств.
Важные правила при решении систем неравенств.
Если одно из неравенств системы не имеет решений, то и вся система не имеет решений.
Если одно из неравенств выполняется для любых значений переменой, то решением системы будет решение другого неравенства.
Примеры.
Решить систему неравенств:$\begin{cases}x^2-16>0\\x^2-8x+12≤0 \end{cases}$
Решение.
Решим каждое неравенство по отдельности.
$x^2-16>0$.
$(x-4)(x+4)>0$.

Решим второе неравенство.
$x^2-8x+12≤0$.
$(x-6)(x-2)≤0$.
Решением неравенства будет промежуток.
Нарисуем оба промежутка на одной прямой и найдем пересечение.
Пересечение промежутков - отрезок (4; 6].
Ответ: (4;6].
Решить систему неравенств.
а) $\begin{cases}3x+3>6\\2x^2+4x+4 б) $\begin{cases}3x+3>6\\2x^2+4x+4>0\end{cases}$.
Решение.
а) Первое неравенство имеет решение х>1.
Найдем дискриминант для второго неравенства.
$D=16-4 * 2 * 4=-16$. $D
Вспомним правило, когда одно из неравенств не имеет решений, то вся система не имеет решений.
Ответ: Нет решений.
Б) Первое неравенство имеет решение х>1.
Второе неравенство больше нуля при всех х. Тогда решение системы совпадает с решением первого неравенства.
Ответ: х>1.
Задачи на системы неравенств для самостоятельного решения
Решите системы неравенств:а) $\begin{cases}4x-5>11\\2x-12 б) $\begin{cases}-3x+1>5\\3x-11 в) $\begin{cases}x^2-25 г) $\begin{cases}x^2-16x+55>0\\x^2-17x+60≥0 \end{cases}$
д) $\begin{cases}x^2+36
Статья раскрывает тему неравенств, разбираются определения систем и их решения. Будут рассмотрены часто встречающиеся примеры решения систем уравнений в школе на алгебре.
Определение системы неравенств
Системы неравенств определяют по определениям систем уравнений, значит, что особое внимание уделяется записям и смыслу самого уравнения.
Определение 1
Системой неравенств называют запись уравнений, объединенных фигурной скобкой с множеством решений одновременно для всех неравенств, входящих в систему.
Ниже приведены примеры неравенств. Даны два неравенства 2 · x − 3 > 0 и 5 − x ≥ 4 · x − 11 . Необходимо записать одно уравнение под другим, после чего объединим при помощи фигурной скобки:
2 · x - 3 > 0 , 5 - x ≥ 4 · x - 11
Таким же образом определение систем неравенств представлены в школьных учебниках как для использования одной переменной, так и двух.
Основные виды системы неравенств
Имеет место составление бесконечного множества систем неравенств. Их классифицируют по группам, отличающихся по определенным признакам. Неравенства подразделяют по критериям:
- количество неравенств системы;
- количество переменных записи;
- вид неравенств.
Количество входящих неравенств может насчитывать от двух и более. В предыдущем пункте рассматривался пример решения системы с двумя неравенствами.
2 · x - 3 > 0 , 5 - x ≥ 4 · x - 11
Рассмотрим решение системы с четырьмя неравенствами.
x ≥ - 2 , y ≤ 5 , x + y + z ≥ 3 , z ≤ 1 - x 2 - 4 · y 2
Решение неравенства отдельно не говорит о решение системы в целом. Для решения системы необходимо задействовать все имеющиеся неравенства.
Такие системы неравенств могут иметь одну, две, три и более переменных. В последней изображенной системе это отчетливо видно, там имеем три переменные: x , y , z . Уравнения могут содержать по одной переменной, как в примере, либо по несколько. Исходя из примеров, неравенство x + 0 · y + 0 · z ≥ − 2 и 0 · x + y + 0 · z ≤ 5 не считают равнозначными. Школьным программам уделяют внимание решению неравенств с одной переменной.
При записи системы могут быть задействованы уравнения разных видов и с разным количеством переменных. Чаще всего встречаются целые неравенства разных степеней. При подготовке к экзаменам могут встретиться системы с иррациональными, логарифмическими, показательными уравнениями вида:
544 - 4 - x 32 - 2 - x ≥ 17 , log x 2 16 x + 20 16 ≤ 1
Такая система включает в себя показательное и логарифмическое уравнение.
Решение системы неравенств
Определение 2Рассмотрим пример решения систем уравнений с одной переменной.
x > 7 , 2 - 3 · x ≤ 0
Если значение х = 8 , то решение системы очевидно, так как выполняется 8 > 7 и 2 − 3 · 8 ≤ 0 . При х = 1 система не решится, так как первое числовое неравенство во время подстановки имеет 1 > 7 . Таким же образом решается система с двумя и более переменными.
Определение 3
Решение системы неравенств с двумя и более переменными называют значения, которые являются решением всех неравенств при обращении каждого в верное числовое неравенство.
Если х = 1 и у = 2 будет решением неравенства x + y < 7 x - y < 0 , потому как выражения 1 + 2 < 7 и 1 − 2 < 0 верны. Если подставить числовую пару (3 , 5 , 3) , тогда система не даст значения переменных и неравенство будет неверным 3 , 5 − 3 < 0 .
При решении системы неравенств могут давать определенное количество ответов, а могут и бесконечное. Имеется ввиду множество решений такой системы. При отсутствии решений говорят о том, что она имеет пустое множество решений. Если решение имеет определенное число, тогда множества решений имеет конечное число элементов. Если решений много, тогда множество решений содержит бесконечное множество чисел.
Некоторые учебники дают определение частного решения системы неравенств, которое понимается как отдельно взятое решение. А общим решением системы неравенствсчитают все его частные решения. Такое определение используется редко, поэтому говорят «решение системы неравенств».
Данные определения систем неравенств и решения рассматриваются как пересечения множеств решений всех неравенств системы. Особое внимание стоит уделить разделу, посвященному равносильным неравенствам.
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
см. также Решение задачи линейного программирования графически , Каноническая форма задач линейного программирования
Система ограничений такой задачи состоит из неравенств от двух переменных:
и целевая функция имеет вид F
= C
1 x
+ C
2 y
, которую необходимо максимизировать.
Ответим на вопрос: какие пары чисел ( x
; y
) являются решениями системы неравенств, т. е. удовлетворяют каждому из неравенств одновременно? Другими словами, что значит решить систему графически?
Предварительно необходимо понять, что является решением одного линейного неравенства с двумя неизвестными.
Решить линейное неравенство с двумя неизвестными – это значит определить все пары значений неизвестных, при которых неравенство выполняется.
Например, неравенству 3x
– 5 y
≥ 42 удовлетворяют пары (x
, y
) : (100, 2); (3, –10) и т. д. Задача состоит в нахождении всех таких пар.
Рассмотрим два неравенства: ax
+ by
≤ c
, ax
+ by
≥ c
. Прямая ax
+ by
= c
делит плоскость на две полуплоскости так, что координаты точек одной из них удовлетворяют неравенству ax
+ by
>c
, а другой неравенству ax
+ +by
<c
.
Действительно, возьмем точку с координатой x
= x
0 ; тогда точка, лежащая на прямой и имеющая абсциссу x
0 , имеет ординату
Пусть для определенности a
< 0, b
>0,
c
>0. Все точки с абсциссой x
0 , лежащие выше P
(например, точка М
), имеют y M
>y
0 , а все точки, лежащие ниже точки P
, с абсциссой x
0 , имеют y N
<y
0 .
Поскольку x
0 –произвольная точка, то всегда с одной стороны от прямой будут находиться точки,
для которых ax
+ by
> c
, образующие полуплоскость, а с другой стороны – точки, для которых ax
+ by
< c
.

Рисунок 1
Знак неравенства в полуплоскости зависит от чисел a
, b
, c
.
Отсюда вытекает следующий способ графического решения систем линейных неравенств от двух переменных. Для решения системы необходимо:
- Для каждого неравенства выписать уравнение, соответствующее данному неравенству.
- Построить прямые, являющиеся графиками функций, задаваемых уравнениями.
- Для каждой прямой определить полуплоскость, которая задается неравенством. Для этого взять произвольную точку, не лежащую на прямой, подставить ее координаты в неравенство. если неравенство верное, то полуплоскость, содержащая выбранную точку, и является решением исходного неравенства. Если неравенство неверное, то полуплоскость по другую сторону прямой является множеством решений данного неравенства.
- Чтобы решить систему неравенств, необходимо найти область пересечения всех полуплоскостей, являющихся решением каждого неравенства системы.
Эта область может оказаться пустой, тогда система неравенств не имеет решений, несовместна. В противном случае говорят, что система совместна.
Решений может быть конечное число и бесконечное множество. Область может представлять собой замкнутый многоугольник или же быть неограниченной.
Рассмотрим три соответствующих примера.
Пример 1.
Решить графически систему:
x
+ y –
1 ≤ 0;
–2 x –
2y
+ 5 ≤ 0.
- рассмотрим уравнения x+y–1=0 и –2x–2y+5=0 , соответствующие неравенствам;
- построим прямые, задающиеся этими уравнениями.

Рисунок 2
Определим полуплоскости, задаваемые неравенствами. Возьмем произвольную точку, пусть (0; 0). Рассмотрим x
+ y–
1 0, подставим точку (0; 0): 0 + 0 – 1 ≤ 0. значит, в той полуплоскости, где лежит точка (0; 0), x
+ y
–
1 ≤ 0, т.е. полуплоскость, лежащая ниже прямой, является решением первого неравенства.
Подставив эту точку (0; 0), во второе, получим: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, т.е. в полуплоскости, где лежит точка (0; 0), –2x
– 2y
+ 5≥ 0, а нас спрашивали, где –2x
– 2y
+ 5 ≤ 0, следовательно, в другой полуплоскости – в той, что выше прямой.
Найдем пересечение этих двух полуплоскостей. Прямые параллельны, поэтому плоскости нигде не пересекаются, значит система данных неравенств решений не имеет, несовместна.
Пример 2.
Найти графически решения системы неравенств:

Рисунок 3
1. Выпишем уравнения, соответствующие неравенствам, и построим прямые.
x
+ 2y
– 2 = 0
| x | 2 | 0 |
| y | 0 | 1 |
y – x – 1 = 0
| x | 0 | 2 |
| y | 1 | 3 |
y + 2 = 0;
y = –2.
2. Выбрав точку (0; 0), определим знаки неравенств в полуплоскостях:
0 + 2 ∙ 0 – 2 ≤ 0, т.е. x + 2y – 2 ≤ 0 в полуплоскости ниже прямой;
0 – 0 – 1 ≤ 0, т.е. y –x – 1 ≤ 0 в полуплоскости ниже прямой;
0 + 2 =2 ≥ 0, т.е. y + 2 ≥ 0 в полуплоскости выше прямой.
3. Пересечением этих трех полуплоскостей будет являться область, являющаяся треугольником. Нетрудно найти вершины области, как точки пересечения соответствующих прямых
Таким образом, А (–3; –2), В (0; 1), С (6; –2).
Рассмотрим еще один пример, в котором получившаяся область решения системы не ограничена.
В этой статье собрана начальная информация о системах неравенств. Здесь дано определение системы неравенств и определение решения системы неравенств. А также перечислены основные виды систем, с которыми наиболее часто приходится работать на уроках алгебры в школе, и приведены примеры.
Навигация по странице.
Что такое система неравенств?
Системы неравенств удобно определить аналогично тому, как мы вводили определение системы уравнений , то есть, по виду записи и смыслу, вложенному в нее.
Определение.
Система неравенств – это запись, представляющая собой некоторое число записанных друг под другом неравенств, объединенных слева фигурной скобкой, и обозначающая множество всех решений, являющихся одновременно решениями каждого неравенства системы.
Приведем пример системы неравенств. Возьмем два произвольных , например, 2·x−3>0
и 5−x≥4·x−11
, запишем их одно под другим
2·x−3>0
,
5−x≥4·x−11
и объединим знаком системы – фигурной скобкой, в результате получим систему неравенств такого вида:
Аналогично дается представление о системах неравенств в школьных учебниках. Стоит отметить, что в них определения даются более узко: для неравенств с одной переменной или с двумя переменными .
Основные виды систем неравенств
Понятно, что можно составить бесконечно много различных систем неравенств. Чтобы не заблудиться в этом многообразии, их целесообразно рассматривать по группам, имеющим свои отличительные признаки. Все системы неравенств можно разбить на группы по следующим критериям:
- по числу неравенств в системе;
- по числу переменных, участвующих в записи;
- по виду самих неравенств.
По числу неравенств, входящих в запись, различают системы двух, трех, четырех и т.д. неравенств. В предыдущем пункте мы привели пример системы , которая является системой двух неравенств. Покажем еще пример системы четырех неравенств
.
Отдельно скажем, что нет смысла говорить о системе одного неравенства, в этом случае по сути речь идет о самом неравенстве, а не о системе.
Если смотреть на число переменных, то имеют место системы неравенств с одной, двумя, тремя и т.д. переменными (или, как еще говорят, неизвестными). Посмотрите на последнюю систему неравенств, записанную двумя абзацами выше. Это система с тремя переменными x , y и z . Обратите внимание, что ее два первых неравенства содержат не все три переменные, а лишь по одной из них. В контексте этой системы их стоит понимать как неравенства с тремя переменными вида x+0·y+0·z≥−2 и 0·x+y+0·z≤5 соответственно. Заметим, что в школе основное внимание уделяется неравенствам с одной переменной.
Осталось обговорить, какие виды неравенств участвуют в записи систем. В школе в основном рассматривают системы двух неравенств (реже – трех, еще реже - четырех и более) с одной или двумя переменными, причем сами неравенства обычно являются целыми неравенствами
первой или второй степени (реже – более высоких степеней или дробно рациональными). Но не удивляйтесь, если в материалах по подготовке к ОГЭ столкнетесь с системами неравенств, содержащими иррациональные, логарифмические, показательные и другие неравенства. В качестве примера приведем систему неравенств
, она взята из
.
Что называется решением системы неравенств?
Введем еще одно определение, связанное с системами неравенств, - определение решения системы неравенств :
Определение.
Решением системы неравенств с одной переменной называется такое значение переменной, обращающее каждое из неравенств системы в верное , другими словами, являющееся решением каждого неравенства системы.
Поясним на примере. Возьмем систему двух неравенств с одной переменной . Возьмем значение переменной x , равное 8 , оно является решением нашей системы неравенств по определению, так как его подстановка в неравенства системы дает два верных числовых неравенства 8>7 и 2−3·8≤0 . Напротив, единица не является решением системы, так как при ее подстановке вместо переменной x первое неравенство обратится в неверное числовое неравенство 1>7 .
Аналогично можно ввести определение решения системы неравенств с двумя, тремя и большим числом переменных:
Определение.
Решением системы неравенств с двумя, тремя и т.д. переменными называется пара, тройка и т.д. значений этих переменных, которая одновременно является решением каждого неравенства системы, то есть, обращает каждое неравенство системы в верное числовое неравенство.
К примеру, пара значений x=1 , y=2 или в другой записи (1, 2) является решением системы неравенств с двумя переменными , так как 1+2<7 и 1−2<0 - верные числовые неравенства. А пара (3,5, 3) не является решением этой системы, так как второе неравенство при этих значениях переменных дает неверное числовое неравенство 3,5−3<0 .
Системы неравенств могут не иметь решений, могут иметь конечное число решений, а могут иметь и бесконечно много решений. Часто говорят о множестве решений системы неравенств. Когда система не имеет решений, то имеет место пустое множество ее решений. Когда решений конечное число, то множество решений содержит конечное число элементов, а когда решений бесконечно много, то и множество решений состоит из бесконечного числа элементов.
В некоторых источниках вводятся определения частного и общего решения системы неравенств, как, например, в учебниках Мордковича . Под частным решением системы неравенств понимают ее одно отдельно взятое решение. В свою очередь общее решение системы неравенств - это все ее частные решения. Однако в этих терминах есть смысл лишь тогда, когда требуется особо подчеркнуть, о каком решении идет речь, но обычно это и так понятно из контекста, поэтому намного чаще говорят просто «решение системы неравенств».
Из введенных в этой статье определений системы неравенств и ее решений следует, что решение системы неравенств представляет собой пересечение множеств решений всех неравенств этой системы.
Список литературы.
- Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
- Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
- Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
- Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
- ЕГЭ -2013. Математика: типовые экзаменационные варианты: 30 вариантов / под ред. А. Л. Семенова, И. В. Ященко. – М.: Издательство «Национальное образование», 2012. – 192 с. – (ЕГЭ-2013. ФИПИ – школе).
В статье рассмотрим решение неравенств . Расскажем доступно о том, как строиться решение неравенств , на понятных примерах!
Перед тем, как рассмотреть решение неравенств на примерах, разберемся с базовыми понятиями.
Общи сведения о неравенствах
Неравенством
называется выражение, в котором функции соединяются знаками отношения >, . Неравенства бывают как числовые, так и буквенные.
Неравенства с двумя знаками отношения, называются двойными, с тремя - тройными и т.д. Например:
a(x) > b(x),
a(x)
a(x) b(x),
a(x) b(x).
a(x)
Неравенства, содержащие знак > или
или - нестрогими.
Решением неравенства
является любое значение переменой, при котором это неравенство будет верно.
"Решить неравенство
" означает, что надо найти множество всех его решений. Существуют различные методы решения неравенств
. Для решения неравенства
пользуются числовой прямой, которая бесконечна. Например, решением неравенства
x > 3 есть промежуток от 3 до +, причем число 3 не входит в этот промежуток, поэтому точка на прямой обозначается пустым кружком, т.к. неравенство строгое. +
Ответ будет следующим: x (3; +).
Значение х=3 не входит в множество решений, поэтому скобка круглая. Знак бесконечности всегда выделяется круглой скобкой. Знак означает «принадлежание».
Рассмотрим как решать неравенства на другом примере со знаком :
x 2
-+
Значение х=2 входит в множество решений, поэтому скобка квадратная и точка на прямой обозначается закрашенным кружком.
Ответ будет следующим: x }

