Случаи целесообразности применения метода анализа размерностей. Международный студенческий научный вестник. Основные понятия теории моделирования

Случаи целесообразности применения метода анализа размерностей. Международный студенческий научный вестник. Основные понятия теории моделирования

Сущность метода анализа целесообразности затрат основывается на том, что в процессе предпринимательской деятельности затраты по каждому конкретному направлению, а также по отдельным элементам, не имеют одинаковую степень риска. Другими словами, степень риска двух разных направлений деятельности одной и той же фирмы неодинакова; и степень риска по отдельным элементам затрат внутри одного и того же направления деятельности также неодинакова. Так, например, гипотетически занятие игорным бизнесом более рискованное по сравнению с производством хлеба и затраты, которые несет диверсифицированная фирма на развитие этих двух направлений своей деятельности, будут также отличаться по степени риска. Даже в том случае, если предположить, что размер затрат по статье «аренда помещений» будет одинаковым по обоим направлениям, то все равно степень риска будет выше в игорном бизнесе. Такая же ситуация сохраняется и с затратами внутри одного и того же направления. Степень риска по затратам, связанным с покупкой сырья (которое может быть доставлено не точно в указанный срок, его качество может не полностью соответствовать технологическим нормам или его потребительские свойства могут быть частично утеряны при хранении на самом предприятии и т. д.), будет выше, чем по затратам на заработную плату.

Таким образом, определение степени риска путем анализа целесообразности затрат ориентировано на идентификацию потенциальных зон риска. Такой подход целесообразен еще и с тех позиций, что дает возможность выявить «узкие места» в деятельности предприятия с точки зрения рискованности, а после разработать пути их ликвидации.

Перерасход затрат может произойти под влиянием всех видов рисков, о которых говорилось ранее во время их классификации.

Обобщив накопленный мировой и отечественный опыт анализа степени риска при помощи использования метода анализа целесообразности затрат, можно сделать вывод о необходимости использовать при таком подходе градацию затрат на области риска.

Для анализа целесообразности затрат состояние по каждому из элементов затрат должно быть разделено на области риска (табл. 4.1), которые представляют собой зону общих потерь, в границах которых конкретные потери не превышают предельного значения установленного уровня риска:

  • 1) область абсолютной устойчивости;
  • 2) область нормальной устойчивости;
  • 3) область неустойчивого состояния:
  • 4) область критического состояния;
  • 5) область кризисного состояния.

В области абсолютной устойчивости степень риска по рассматриваемому элементу затрат соответствует нулевому риску. Данная область характеризуется отсутствием каких-либо потерь при совершении предпринимательской деятельности с гарантированным получением плановой прибыли, размер которой теоретически не ограничен. Элемент затрат, который находится в области нормальной устойчивости, характеризуется минимальной степенью риска. Для данной области максимальные потери, которые может нести субъект предпринимательской деятельности, не должны превышать границы плановой чистой прибыли (т.е. той ее части, которая остается у субъекта хозяйствования после налогообложения и всех остальных выплат, которые производятся на данном предприятии из прибыли, например, выплата дивидендов). Таким образом, минимальная степень риска обеспечивает фирме «покрытие» всех ее издержек и получение той части прибыли, которая позволяет покрыть все налоги.

Как правило, в условиях рыночной экономики, как было показано ранее, направление, которое имеет минимальную степень риска, связано с тем, что государство является его основным контрагентом. Это может проходить в самых различных формах, из которых основными являются такие, как: осуществление операций с ценными бумагами правительства или муниципальных органов, участие в выполнении работ, финансируемых за счет государственного или муниципальных бюджетов и т.д.

Область неустойчивого состояния характеризуется повышенным риском, при этом уровень потерь не превышает размеры расчетной прибыли (т. е. той части прибыли, которая остается у предприятия после всех выплат в бюджет, уплаты процентов за кредит, штрафов и неустоек). Таким образом, при такой степени риска субъект предпринимательской деятельности рискует тем, что он в худшем случае получит прибыль, величина которой будет меньше ее расчетного уровня, но при этом будет возможность произвести покрытие всех своих издержек.

В границах области критического состояния, которой соответствует критическая степень риска, возможны потери в границах валовой прибыли (т. е. общей сумме прибыли, которая получена предприятием до произведения всех вычетов и отчислений). Такой риск является нежелательным, потому что при этом фирма рискует потерять не просто прибыль, а и не покрыть полностью свои издержки.

Недопустимый риск, который соответствует области кризисного состояния, означает принятие субъектом предпринимательской деятельности такой степени риска, которая предполагает наличие возможности не покрытия всех издержек фирмы, связанных с данным направлением ее деятельности.

Таблица 4.1 - Области деятельности предприятия.

После того, как рассчитан коэффициент b на основании данных прошлых периодов, каждая статья затрат. Анализируется по отдельности на предмет ее идентификации по областям риска и максимальным потерям. При этом степень риска всего направления предпринимательской деятельности будет соответствовать максимальному значению риска по элементам затрат. Преимущество данного метода состоит в том, что зная статью затрат, у которой риск максимальный, возможно найти пути его снижения (например, в том случае, если максимальная точка риска приходится на затраты, связанные с арендой помещения, то можно отказаться от аренды и купить его и т. п.)

Основной недостаток такого подхода к определению степени риска, так же как и при статистическом методе, состоит в том, что предприятие не анализирует источники происхождения риска, а принимает риск как целостную величину, таким образом, игнорируя его мультисоставляющие.

Метод анализа размерностей часто бывает очень эффективен при решении сложных задач механики, в частности, в гидравлике, гидродинамике и аэродинамике. Вместе с представлением о физическом смысле явлений или с привлечением опытных данных он приводит, и притом быстро и просто, к результатам, оценивающим данное явление.

В отечественной литературе методы подобия и размерности изложены в монографии например [Сена]; [Седова]; [Когана]. Признавая, что π-теорема имеет основополагающий характер, мы упоминаем и разъясняем её однажды; в дальнейшем по уровню и общности придерживаемся книги [Коган].

Основные определения.

Существует несколько систем единиц измерений (CGS, СИ и др.) и в каждой из них некоторые физические величины условно принимаются за основные или первичные , т.е. такие, для которых единицы устанавливаются произвольно и независимо. В механике, и в частности, в гидромеханике и гидравлике применяется система L , m , t ,в которой за основные величины принимаются длина L , масса m и время t . Очевидно, что при анализе любого явления единицы измерения массы, времени и длины выбираются независимо друг от друга. Ко вторичным величинам относятся те, которые получаются как комбинации основных. Например, ко вторичным величинам относятся: скорость V = S / t или [V ]= Lt -1 , ускорение a = V / t или [a ]= Lt -2 , плотность ρ= m / W или [ρ ]= mL -3 и многие другие величины. Квадратные скобки, в которые поставлено обозначение величины, означает, что речь идет о размерности единицы этой величины, а символы L ,m, t представляют собой обобщенные обозначения единиц длины, массы и времени без указания конкретного наименования единиц.

В специальных курсах показывается, что формула размерности вторичных величин должна быть степенного вида относительно всех основных физических величин . Допустим, например, что число основных величин выбрано равным трем и за них приняты длина L , масса m и время t . Тогда размерность физической величины y представится формулой

[y ]= L α m β t γ , (.1)

где α , β , γ – постоянные числа (напомним, что квадратные скобки, в которые поставлен символ величины y , означает, что рассматривается размерность этой величины). Формула (.1) называется формулой размерности единицы данной величины или, как часто говорят, кратко- размерностью данной величины.

Необходимо подчеркнуть, что умножать и делить можно физические величины любой размерности, а складывать и вычитать возможно только величины одинаковой размерности.

Пример(.1) . Скорость V может быть выражена как V = L / t = L 1 m 0 t -1 , т.е. α =1 , β =0, γ =-1 .Сила F = ma может быть представлена как F = mL / t ²= L 1 m 1 t -2 , т.е. α =1 , β =1 , γ = -2 .

Не обязательно α , β , γ – рациональные числа, но вводить числа кроме рациональных нет необходимости. Часто размерность физической величины отождествляют с ее единицей в соответствующей системе единиц. Так, например, говорят, что скорость имеет размерность см/с (сантиметр в секунду). Хотя это и не логично, но грубой ошибки в этом нет. В данном случае см/с- это наименование единицы (точно так же, как км/ч, м/с и т.д.).Всегда, если есть необходимость, единицы такого типа позволяют перейти к формулам размерности, в которых масштабы единиц основных величин не фиксированы.

Замечание 1. Разные физические величины могут иметь одинаковые размерности даже в одной и той же системе единиц. Примерами могут служить в механике работа и кинетическая энергия или работа и момент силы (система Lmt ).

Замечание 2. Безразмерными комбинациями физических величин называются такие комбинации, которые в рассматриваемой системе единиц имеют нулевую размерность. Их числовые значения не меняются при изменении масштабов единиц основных величин.

Задача 1. Найти размерности: 1) давления; 2) энергии; 3) коэффициента динамической вязкости; 4) коэффициента кинематической вязкости; 5) коэффициента поверхностного натяжения.

Все результаты, которые могут быть получены с помощью метода анализа размерностей, основаны на двух теоремах.

1

В статье рассмотрена теория метода размерностей и применение данного метода в физике. Уточнено определение метода размерностей. Перечислены возможности данного метода. С помощью теории размерности можно получить особенно ценные выводы при рассмотрении таких явлений, которые зависят от большого количества параметров, но при этом так, что некоторые из этих параметров в известных случаях становятся несущественными. В рассматриваемом методе искомая закономерность может быть представлена в виде произведения степенных функций физических величин, от которых зависит искомая характеристика. Метод теории размерности играет особенно большую роль при моделировании различных явлений. Таким образом, целью анализа размерностей является получение некоторых сведений о соотношениях, существующих между измеримыми величинами, связанными различными явлениями.

размерность

метод размерностей

физическая величина

1. Алексеевнина А.К. От физических понятий к культуре речи // Фундаментальные исследования. – 2014. – № 6-4. – С. 807-811.

2. Брук Ю.М., Стасенко А.Л. Как физики делают оценки – метод размерностей и порядки физических величин // Сб. «О современной физике – учителю», изд. «Знание», Москва, 1975. – С. 54–131.

3. Власов А.Д., Мурин Б.П. Единицы физических величин в науке и технике. – М.: Энергоатомиздат, 1990. – 27 с.

Ежедневно мы сталкиваемся с различными измерениями. Чтобы не опаздывать, мы устанавливаем будильник (фиксируем время), следим за культурой своего питания (взвешиваем продукты, считаем калории). Единицы измерения всем знакомы, например, скорость движения измеряется в м/c в системе СИ, а в другой - км/час. Единицы измерения придуманы людьми, исторически это связано с развитием социума, научно-технического процесса, торговли и т.д.

В науке закономерности, то есть уравнения связи одних физических величин с другими, необходимо анализировать не с помощью единиц, которые полностью зависят от человека, а с помощью каких-то других понятий, независимых от человека. Поскольку и сами природные закономерности от человека не зависят.

Уравнения связи физических величин анализируют не с помощью единиц измерения, а с помощью каких-то других понятий, однозначных для одной и той же величины. С этой целью и введено понятие «размерности». Размерность - это выражение (без числовых коэффициентов), зависимости величины от основных величин системы, в виде произведения степеней сомножителей, соответствующих основным величинам. Каждой размерности придуман свой символ обозначения, и порядок их расположения строго регламентировано. Например, объем любого тела обозначаться L3, скорость механического движения тела - LT-1 .

Тот факт, что физические соотношения имеют скалярный, векторный или тензорный характер, отражает свойство инвариантности физических законов относительно системы координат.

С другой стороны, для того, чтобы задать значения какой-либо физической величины, необходимо задать единицы ее измерения, и, вообще говоря, систему единиц измерения. Очевидно, что смысл физических соотношений не должен зависеть от выбора системы единиц измерений.

При этом нет необходимости для каждой физической величины задавать строго особую единицу измерения, т.к. физические определения и соотношения позволяют выражать размерности одних физических величин через другие.

Например, определение скорости позволяет выразить размерность скорости v = ds/dt через размерности перемещения ds и времени dt.

В любой системе единиц вводятся основные единицы измерения. Они вводятся из опыта с помощью эталонов. Например, в СИ основными считаются метр, секунда, килограмм, Ампер, Кельвин, моль, кандела.

Выражение произвольной единицы измерения через основные единицы измерения называется размерностью. Для каждой основной величины вводится обозначение: L - длина, М - масса, Т-время и т.д.

Любая произвольная размерность обозначается квадратными скобками от соответствующей величины. Например, [v] - размерность скорости, [Е] - размерность энергии и т.д.

Формула размерности. В теории размерности доказывается, что размерность любой величины представляет собой степенные одночлены вида [N] = LlTtMm... и называется формулой размерности. Иногда в формулах размерности используют не символы основных величин, а их единиц измерения [v] = мс-1, [Е] = кг м2с2 и т.д.

Метод размерностей - одно из самых интересных методов расчета. Суть его заключается в возможности восстанавливать различные соотношения между физическими величинами. Достоинства: быстрая оценка масштабов исследуемых явлений; получение качественных и функциональных зависимостей; восстановление забытых формул на экзаменах, ЕГЭ. А так же специальные задания с использованием метода размерностей, способствует развитию мышления и культуры речи .

В основе метода размерностей лежит составление перечня существенных физических величин, определяющих процесс в данной задаче. Это возможно сделать лишь при сознательном и глубоком понимании, а также при исследовательском, творческом подходе к разбору физической ситуации. Это означает, что использование метода размерностей способствует развития мышления учащихся на уроках физики. Большинство задач школьного курса физики относительно просты с точки зрения рассматриваемого метода, это значительно облегчает его использование в обучении.

Рассмотрим некоторые достоинства и приложения метода размерностей:

Быстрая оценка масштабов исследуемых явлений;

Получение качественных и функциональных зависимостей;

Восстановление забытых формул на экзаменах;

Выполнение некоторых заданий ЕГЭ;

Осуществление проверки правильности решения задач.

Метод размерностей является распространенным и относительно простым методом современной физической науки. Он позволяет с меньшими затратами сил и времени проверить:

1) правильность решения задачи;

2) установить функциональную зависимость между физическими величинами, характеризующими данный процесс;

3) оценить ожидаемый численный результат. Кроме того, учитель физики имеет возможность:

а) опросить за урок большее число учащихся;

б) выяснить знание формул и единиц измерения физических величин;

в) сэкономить время при объяснении нового материала. Использование метода размерностей на учебных занятиях будет стимулировать более углубленное изучение предмета, расширит кругозор учащихся, усилит меж предметную связь.

В физике имеется одна чрезвычайно полезная математическая процедура, называемая анализом размерностей.

Для правильной постановки и обработки экспериментов, результаты которых позволяли бы установить общие закономерности и могли бы быть приложенными к случаям, в которых эксперимент не проводился непосредственно, необходимо вникать в сущность изучаемого вопроса и давать общий качественный анализ.

Возможность такого предварительного качественно-теоретического анализа и выбора системы определяющих безразмерных величин и дает теория размерности, которая приносит много пользы и в теории, и в практике. Все результаты, добываемые с помощью этой теории, получаются всегда очень просто, элементарно и почти без всякого труда. Но применение этой теории к новым задачам требует опыта и понимания сущности явления.

Всякое уравнение в физике выражает соотношение, объективно существующее в природе, независимо от воли того, кто это уравнение пишет. И, конечно, обе части уравнения должны выражаться величинами, измеряемыми в одних и тех же единицах.

Анализ размерностей широко применяется в физике для анализа уравнений, которые бывают не так просты, как F = ma, и в отношении которых присутствует сомнение, верны ли они. Если бы степени хотя бы одной размерности не совпали, то это означало бы стопроцентную гарантию того, что уравнение неверно .

При решении задач, а соответственно и тестов большое значение имеет контроль по установлению размерностей величин входящих в качестве слагаемых в расчетные формулы. Вполне очевидно, что выражение типа «3м-2кг» не имеет смысла, поэтому если в результате решения появляются слагаемые, имеющие разную размерность, то это явный признак того, что была допущена ошибка (чаше всего она носит арифметический характер). Понимая это, необходимо периодически при решении теста или задачи прибегать к анализу размерности.

Польза от применения размерностей не ограничивается процедурой анализа размерностей. Также метод размерностей используется при систематизации физических величин.

Следует только помнить, что размерность при систематизации физических величин - это всё же понятие вспомогательное. Оно помогает решать проблему, но решить проблему не возможно только с помощью размерностей. Да и стремиться к такому подходу вряд ли стоит. Проблему систематизации физических величин решает только сравнение определяющих уравнений, а применение размерностей придает этому решению определенную наглядность.

В свою очередь, физические величины могут быть размерными и безразмерными. Величины, численное значение которых зависит от принятых масштабов, то есть от системы единиц измерения, называются размерными или именованными величинами, например: длина, время, сила, энергия, момент силы и т. д. Величины, численное значение которых не зависит от применяемой системы единиц измерения, называются безразмерными или отвлеченными величинами, например: отношение двух длин, отношение квадрата длины к площади, отношение энергии к моменту силы и др. Это понятие является условным, и поэтому некоторые величины можно рассматривать в одних случаях как размерные, а в других - как безразмерные.

Различные физические величины связаны между собой определенными соотношениями. Поэтому если некоторые из них принять за основные и установить для них какие-то единицы измерения, то единицы измерения остальных величин будут определенным образом выражаться через единицы измерения основных величин. Принятые для основных величин единицы измерения называются основными или первичными, а остальные - производными или вторичными.

В настоящее время большим распространением пользуются физическая и техническая системы единиц измерения. В физической системе за основные единицы измерения приняты сантиметр, грамм-масса и секунда (система CGS),

Метод размерностей работает в очень широком диапазоне порядков величин, он позволяет оценивать размеры Вселенной и характеристики атомного ядра, проникать внутрь звезд и находить ошибки у писателей - фантастов, изучать волны на поверхности лужи и подсчитывать количество взрывчатки при строительстве туннелей в горах.

Основная польза теории размерностей связана с возможностью изучения физических закономерностей в безразмерном виде, не зависящим от выбора систем единиц измерения. Результаты анализа проблемы в безразмерном виде применимы сразу к целому классу явлений.

Суммируя все вышеизложенное, сделаем следующие выводы:

1. Метод размерностей может быть использован в случае, если искомая величина может быть представлена в виде степенной функции.

2. Метод размерностей позволяет качественно решить задачу и получить ответ с точностью до числового коэффициента

3. В некоторых случаях метод размерностей является единственным способом решить задачу и хотя бы оценить ответ.

4. Решение задач методом размерностей является дополнительным или вспомогательным методом, позволяющим лучше понять взаимодействие величин, их влияние друг на друга.

5. Метод размерностей очень прост в математическом отношении.

Данный метод требует особого внимания. Более конкретного и детального изучения, с целью внедрения данного метода в школьный курс физики, для осознанного и целенаправленного использования метода размерности при решении поставленных задач перед учащимися.

Библиографическая ссылка

Полунина М.М., Маркова Н.А. МЕТОД РАЗМЕРНОСТЕЙ В ФИЗИКЕ // Международный студенческий научный вестник. – 2017. – № 4-5.;
URL: http://eduherald.ru/ru/article/view?id=17494 (дата обращения: 05.01.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Основные понятия теории моделирования

Моделированием называется метод экспериментального изучения модели явления вместо натурного явления. Модель выбирают так, чтобы результаты эксперимента можно было распространить на натурное явление.

Пусть моделируется поле величины w . Тогда при точном моделировании в сходственных точках модели и натурного объекта должно соблюдаться условие

где масштаб моделирования.

В случае приближенного моделирования получим

Отношение называется степенью искажения.

Если степень искажения не превосходит точности измерения, то приближенное моделирование не отличается от точного. Нельзя заранее сделать так, чтобы величина не превышала некоторого наперед заданного значения, так как в большинстве случаев ее нельзя заранее даже определить.

Метод аналогий

Если два физических явления различной физической природы описываются тождественными уравнениями и условиями однозначности (краевыми или в стационарном случае граничными условиями), представленными в безразмерной форме, то явления называются аналогичными. При этих же условиях явления одной физической природы называются подобными.

Несмотря на то, что аналогичные явления имеют различную физическую природу, они относятся к одному индивидуальному обобщенному случаю. Это обстоятельство позволило создать весьма удобный метод аналогий для изучения физических явлений. Сущность его состоит в следующем: обследованию подвергается не изучаемое явление, для которого трудно или невозможно измерить искомые величины, а специально подобранное аналогичное изучаемому. В качестве примера рассмотрим электротепловую аналогию. В этом случае изучаемое явление - стационарное температурное поле, а его аналогия - стационарное поле электрического потенциала

Уравнение теплопроводности

(9.3)

где абсолютная температура,

и уравнение электрического потенциала

(9.4)

где электрический потенциал, аналогичны. В безразмерной форме эти уравнения будут тождественны.

Если созданы граничные условия для потенциала, аналогичные условиям для температуры, то в безразмерной форме они будут также тождественны.

Электротепловая аналогия широко используется при изучении процессов теплопроводности. Например, температурные поля лопаток газовых турбинин были измерены этим методом.

Анализ размерностей

Иногда приходится изучать процессы, которые еще не описаны дифференциальными уравнениями. Единственный путь изучения - эксперимент. Результаты эксперимента целесообразно представлять в обобщенной форме, но для этого нужно уметь находить безразмерные комплексы, характерные для такого процесса

Анализ размерностей - это метод составления безразмерных комплексов в условиях, когда изучаемый процесс еще не описан дифференциальными уравнениями.

Все физические величины можно разделить на первичные и вторичные. Для процессов теплообмена за первичные обычно выбирают следующие: длину L, массу m , время t , количество теплоты Q избыточную температуру . Тогда вторичными будут такие величины, как коэффициент теплоотдачи температуропроводность a и т. п.

Формулы размерности вторичных величин имеют вид степенных одночленов. Например, формула размерности для коэффициента теплоотдачи имеет вид

(9.5)

где Q –количество теплоты.

Пусть известны все физические величины, существенные для изучаемого процесса. Требуется найти безразмерные комплексы.

Составим произведение из формул размерностей всех существенных для процесса физических величин в некоторых неопределенных пока степенях; очевидно, оно будет степенным одночленом (для процесса). Предположим, что его размерность (степенного одночлена) равна нулю, т. е. показатели степеней первичных величин, входящих в формулу размерностей, сократились, тогда степенной одночлен (для процесса) можно представить в форме произведения безразмерных комплексов из размерных величин. Значит, если составить произведение из формул размерностей, существенных для процессов физических величин в неопределенных степенях, то из условия равенства нулю суммы показателей степеней первичных величин этого степенного одночлена можно определить искомые безразмерные комплексы.

Покажем эту операцию на примере периодического процесса теплопроводности в твердом теле, омываемом жидким теплоносителем. Будем считать, что дифференциальные уравнения для рассматриваемого процесса неизвестны. Требуется найти безразмерные комплексы.

Существенными физическими величинами для изучаемого процесса будут следующие: характерный размер l (м), теплопроводность твердого тела , (Дж/(м К)), удельная теплоемкость твердого тела с (Дж/(кг К)), плотность твердого тела (кг/м 3), коэффициент теплообмена (теплоотдачи) (Дж/м 2 К)), время периода , (с), характерная избыточная температура (К). Составим из этих величин степенной одночлен вида

Показатель степени при первичной величине называется раз мерностью вторичной величины по отношению к данной первичной.

Заменим в физические величины (кроме Q) их формулами размерности, в результате получим

В данном случае показатели степени имеют значения, при которых Q выпадает из уравнения.

Приравняем нулю показатели степеней одночлена:

для длины

a – b - 3i - 2k = 0; (9.8)

для количества теплоты Q

0; (9.9)

для времени

для температуры

для массы m

Всего существенных величин семь, уравнений для определения показателей пять, значит, только два показателя, например, b и kмогут быть выбраны произвольно.

Выразим все показатели степеней через b и k. В результате получим:

из (8.8), (8.9), (8.12)

f = -b - k ; (9.14)

r=b + k ; (9.15)

из (8.11) и (8.9)

n = b + f + k = b + (-b – k ) + k = 0; (9.16)

из (8.12) и (8.9)

i = f = -b -k. (9.17)

Теперь одночлен можно представить в форме

Так как показатели b и k могут быть выбраны произвольно, положим:

1. при этом запишем

© 2024 educent.ru - Портал полезных знаний для школьников и их родителей