Квадрат — это четырехугольник, имеющий равные стороны и углы.
Диагональ квадрата — это отрезок, соединяющий две его противоположные вершины.
Параллелограмм , ромб и прямоугольник так же являются квадратом, если они имеют прямые углы, одинаковые длины сторон и диагоналей.
Свойства квадрата
1. Длины сторон квадрата равны.
AB=BC=CD=DA
2. Все углы квадрата прямые.
\angle ABC = \angle BCD = \angle CDA = \angle DAB = 90^{\circ}
3. Противолежащие стороны квадрата параллельны друг другу.
AB \parallel CD, BC \parallel AD
4. Сумма всех углов квадрата равна 360 градусов.
\angle ABC + \angle BCD + \angle CDA + \angle DAB = 360^{\circ}
5. Величина угла между диагональю и стороной равна 45 градусов.
\angle BAC = \angle BCA = \angle CAD = \angle ACD = 45^{\circ}
Доказательство
Квадрат является ромбом \Rightarrow AC — биссектриса угла A , и он равняется 45^{\circ} . Тогда AC делит \angle A , и \angle C на 2 угла по 45^{\circ} .
6. Диагонали квадрата — тождественны, перпендикулярны и разделяются точкой пересечения пополам.
AO = BO = CO = DO
\angle AOB = \angle BOC = \angle COD = \angle AOD = 90^{\circ}
AC = BD
Доказательство
Так как квадрат это прямоугольник \Rightarrow диагонали равны; так как — ромб \Rightarrow диагонали перпендикулярны. А так как — параллелограмм, \Rightarrow диагонали разделены точкой пересечения пополам.
7. Каждая из диагоналей делит квадрат на два равнобедренных прямоугольных треугольника.
\triangle ABD = \triangle CBD = \triangle ABC = \triangle ACD
8. Обе диагонали делят квадрат на 4 равнобедренных прямоугольных треугольника.
\triangle AOB = \triangle BOC = \triangle COD = \triangle AOD
9. Если сторона квадрата равна a, то, диагональ будет равна a \sqrt{2} .
Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!
Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.
Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.
Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.
Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.
Квадратом называют ромб с прямыми углами. Эта фигура единовременно является параллелограммом, прямоугольником и ромбом, владея исключительными геометрическими свойствами. Обнаружить сторону квадрата через его диагональ дозволено несколькими методами.
Вам понадобится
- – теорема Пифагора;
- – соотношение углов и сторон прямоугольного треугольника;
- – калькулятор.
Инструкция
1. От того что у квадрата диагонали равны между собой (это качество ему досталось «по наследству» от прямоугольника), то для того, дабы обнаружить сторону квадрата довольно знать длину одной диагонали. Диагональ и две стороны квадрата , примыкающие к ней, представляют прямоугольный (от того что все углы квадрата прямые) и равнобедренный (потому что все стороны этой фигуры равны) треугольник. В этом треугольнике стороны квадрата являются катетами, а диагональ гипотенузой. Дабы обнаружить сторону квадрата , воспользуйтесь теоремой Пифагора.
2. От того что сумма квадратов катетов, которые равны a, равна квадрату гипотенузы, которую обозначьте c (c?=a?+a?), то катет будет равен гипотенузе, поделенной на корень квадратный из числа 2, что проистекает и предыдущего выражения a=c/?2. Скажем, дабы обнаружить сторону квадрата с диагональю 12 см, это число поделите на корень квадратный из 2. Получите a=12/?2?8,5 см. С учетом того, что корень квадратный из 2 нацело не извлекается, все результаты придется округлять с необходимой точностью.
3. Сторону квадрата обнаружьте, применяя соотношение углов и сторон в прямоугольном треугольнике, тот, что образуется диагональю и примыкающими к ней сторонами. Вестимо, что один из углов этого треугольника прямой (как угол между сторонами квадрата ), а два других равны между собой и составляют 45?. Это качество проистекает из равнобедренности этого треугольника, от того что катеты его равны между собой.
4. Дабы обнаружить сторону квадрата , умножьте диагональ на синус либо косинус угла 45? (они равны между собой, как прилежащий и противолежащий катеты sin(45?)=cos(45?)=?2/2) a=c??2/2. Скажем, дана диагональ квадрата , равная 20 см, необходимо обнаружить его сторону . Произведите расчет согласно указанной выше формуле, итогом будет сторона квадрата с требуемой степенью точности a=20??2/2?14,142 см.
Зачастую в геометрических задачах требуется обнаружить длину стороны квадрата, если знамениты другие его параметры – такие, как площадь, диагональ либо периметр.
Вам понадобится
- Калькулятор
Инструкция
1. Если знаменита площадь квадрата, то для того, дабы обнаружить сторону квадрата, нужно извлечь квадратный корень из числового значения площади (потому что площадь квадрата равняется квадрату его стороны):a=?S, гдеa – длина стороны квадрата;S – площадь квадрата.Единицей измерения стороны квадрата будет являться линейная единица измерения длины, соответствующая единице измерения площади. Скажем, если площадь квадрата дана в сантиметрах квадратных, то длина его стороны получится легко в сантиметрах.Пример:Площадь квадрата составляет 9 квадратных метров.Обнаружить длину стороны квадрата.Решение:a=?9=3Ответ:Сторона квадрата равняется 3 метрам.
2. В том случае, когда знаменит периметр квадрата, для определения длины стороны необходимо числовое значение периметра поделить на четыре (потому что квадрат имеет четыре стороны идентичной длины):a=P/4, где:a – длина стороны квадрата;P – периметр квадрата.Единицей измерения стороны квадрата будет являться та же самая линейная единица измерения длины как и у периметра. Скажем, если периметр квадрата задан в сантиметрах, то длина его стороны также получится в сантиметрах.Пример:Периметр квадрата составляет 20 метров.Обнаружить длину стороны квадрата.Решение:a=20/4=5Ответ:Длина стороны квадрата равняется 5 метрам.
3. Если знаменита длина диагонали квадрата, до длина его стороны будет равняться длине его диагонали, поделенной на корень квадратный из 2 (по теореме Пифагора, потому что смежные стороны квадрата и диагональ составляют прямоугольный равнобедренный треугольник):a=d/?2(т.к. a^2+a^2=d^2), где:a – длина стороны квадрата;d – длина диагонали квадрата.Единицей измерения стороны квадрата будет являться единица измерения длины та же самая, что и у диагонали. Скажем, если диагональ квадрата измерена в сантиметрах, то и длина его стороны получится в сантиметрах.Пример:Диагональ квадрата равняется 10 метров.Обнаружить длину стороны квадрата.Решение:a=10/?2, либо примерно: 7,071Ответ:Длина стороны квадрата равняется 10/?2, либо приблизительно 1,071 метра.
Представление “соотношение ” применяют в различных областях умений. Социальные науки постигают соотношение числа мужчин и женщин, работающих и безработных. В экономике знаменито соотношение потребности и предложения. В бизнесе оценивают соотношение заемного и собственного капитала. В математике исследуют соотношение сторон геометрических фигур. В спорте увлекательно соотношение роста и веса человека. В всеобщем смысле соотношение – это показатель, разрешающий оценивать разницу между величинами. В качестве иллюстрации обнаружим соотношение пройденного и оставшегося пути машины, перемещающейся из одного города в иной.
Инструкция
1. Определите путь, пройденный машиной. Возможен, машина прошла 120 км.
2. Определите путь, тот, что осталось пройти машине. Пускай осталось пройти 100 км.
3. Обнаружьте соотношение между пройденным и оставшимся путем. 120 км разделяем на 100 км, получаем 1,2.
4. Сделайте итоги. От того что величина соотношения огромнее 1, машина проехала огромнее половины требуемого расстояния. Пройденный путь в 1,2 раза превышает оставшийся путь.
Видео по теме
Обратите внимание!
Дабы водителю машины хватило воды и пищи на каждый путь, он должен следить за соотношением между съеденной и оставшейся пищей. Это соотношение должно соответствовать соотношению между пройденным и оставшимся путем.
Полезный совет
Для различных явлений жизни ученые разработали желанные соотношения, к которым нужно тяготиться для наибольшей результативности процесса. Такие желанные соотношения сведены в таблицы, помещенные в справочниках. Скажем, знамениты желанные соотношения роста и веса человека. Отклонение от этих значений в ту либо иную сторону показывает экспертам, что дозволено усовершенствовать.Если бы вы захотели оценить, классно это либо дрянно – соотношение 1,2 для машины, то обязаны были бы обратиться к соответствующему справочнику. В утилитарной деятельности люди на собственном навыке познают, какие соотношения являются классными, даже если они не указаны ни в каких таблицах. Скажем, если путь из одного города в иной занимает 2 дня, шофер машины по навыку может знать, что в 1-й день следует проехать огромнее, чем во 2-й, так как накапливается усталость. И чем выше соотношение, тем отменнее. Он может ехать так, дабы на конец 1-го дня соотношение пройденного и оставшегося пути оказалось не менее 1,8.Слежения могут подсказать вам наилучшие соотношения для всяких дел вашей жизни.
Квадрат – прекрасная и простая плоская геометрическая фигура. Это прямоугольник с равными сторонами. Как же обнаружить диагональ квадрата , если знаменита длина его стороны?
Инструкция
1. Диагональ квадрата обнаружить довольно примитивно, воспользовавшись теоремой Пифагора.Поделим квадрат диагональ ю на два равных треугольника. В этом случае диагональ будет являться гипотенузой одного из треугольников. А, как вестимо, квадрат гипотенузы равен сумме квадратов катетов.Рассматривая. что катеты – стороны квадрата и они равны, формула для расчета диагонали квадрата по его стороне дюже примитивна:длина диагонали квадрата равна длине его стороны умноженной на корень из 2-х.
Видео по теме
Полезный совет
Если точность математического итога не дюже главна, то взамен корня из 2-х дозволено применять его примерное значение 1,41.
Совет 5: Как обнаружить сторону квадрата, если вестима его диагональ
Квадрат является одной из особенно примитивных геометрических фигур в плане вычисления его параметров – длин сторон и диагоналей, площади и периметра. Это определяется тем, что в различие от других многоугольников, неизменно знамениты величины всех его углов, а также довольно знать длину каждого одной стороны. Нахождение длины стороны квадрата по знаменитой длине диагонали, как в всеобщем виде, так и с фактическими расчетами не представляет трудности.
Инструкция
1. Используйте теорему Пифагора, алгебраическая формулировка которой заявляет, что в прямоугольном треугольнике сумма квадратов длин катетов равна квадрату длины гипотенузы: a? + b? = c?. Потому что диагонали квадрата делят его на два именно таких прямоугольных треугольника, у которых к тому же еще и длины катетов идентичны, то дозволено сформулировать такое качество квадрата , как геометрической фигуры: квадрат длины диагонали равен удвоенному квадрату длины стороны (2a?=c?). Из этого вытекает, что длина стороны равна квадратному корню из половины квадрата длины диагонали: a=√(c?/2).
2. Воспользуйтесь встроенным в поисковую систему Google калькулятором для фактических расчетов по вычислению длины стороны квадрата . Скажем, если знаменитая длина диагонали равна 15 сантиметрам, то перейдя на сайт поисковика, введите такой запрос: «корень из ((15 в квадрате)/2)». Если вы привыкли применять символ ^ для обозначения операции возведения в степень и sqrt для обозначения операции извлечения квадратного корня, то Google верно осознает и такой запрос: «sqrt (15^2/2)». В любом случае результат будет идентичен: длина стороны квадрата равна 10,6066017 сантиметров.
3. Используйте, скажем, программный калькулятор из стандартного комплекта программ операционной системы Windows в качестве альтернативного метода для расчета длины стороны квадрата . Ссылка на его запуск упрятана достаточно велико в основное меню системы – позже щелчка по кнопке «Пуск» необходимо раскрыть раздел «Все программы», перейти в подраздел «Типовые», кликнуть секцию «Служебные» и предпочесть пункт «Калькулятор». Больше стремительный метод – нажать сочетание клавиш WIN + R, ввести команду calc и нажать клавишу Enter.
4. Введите вестимую длину стороны, после этого нажмите клавишу со звездочкой и Enter – так вы исполните операцию возведения в квадрат. После этого нажмите клавишу с косой чертой, введите двойку и нажмите Enter. Позже этого щелкните кнопку с надписью sqrt и увидите желанную длину стороны квадрата – 10,606601717798212866012665431573 сантиметров.
Часто в геометрии необходимо найти длину стороны квадрата, при этом известны такие его параметры: периметр, площадь, длина диагонали.
Квадрат - это ромб или прямоугольник, стороны которого равны между собой. Углы квадрата также равны между собой и имеют по 90° каждый. Рассмотрим, как найти сторону квадрата имея один из вышеперечисленных параметров.
Нахождение стороны квадрата по его периметру
В этом случае, чтобы найти длину стороны квадрата, необходимо число значения периметра квадрата разделить на 4 (поскольку квадрат имеет 4 стороны, равные между собой): z = P/4, где z - это длина стороны квадрата; P - это периметр квадрата.
Единицей измерения одной стороны квадрата будет та же самая единица измерения длины, как у его периметра. Например, если задан периметр квадрата в миллиметрах, то также длина его стороны будет в миллиметрах.
Например: Задан периметр квадрата 40 метров. При решении этой задачи мы получим: z = 40/4 = 10. Длина стороны квадрата - 10 метров.
Нахождение стороны квадрата по его площади
В этом случае, чтобы найти длину стороны, необходимо добыть квадратный корень числа значения площади (поскольку площадь квадрата равна квадрату его стороны): z = vS, где z - это длина стороны квадрата; S - это площадь квадрата.
Единицей измерения одной стороны квадрата будет та же самая единица измерения длины, как у его площади. Например, если задана площадь квадрата в миллиметрах квадратных - длина его стороны будет просто в миллиметрах.
Например: Задана площадь квадрата 16 квадратных метров. При решении этой задачи мы получим: z = v9 = 3. Длина стороны квадрата - 4 метра.
Нахождение стороны квадрата по его диагонали
В этом случае длина стороны квадрата будет равна длине диагонали квадрата, разделенной на корень квадратный из 2 (за теоремой Пифагора, поскольку смежные стороны квадрата и его диагональ составляют равнобедренный прямоугольный треугольник). Чтобы найти сторону квадрата по диагонали необходимо: z = d/v2 (так как z 2 + z 2 = d 2), где: z - это длина стороны квадрата; d - это длина диагонали квадрата.
Единицей измерения одной стороны квадрата будет та же самая единица измерения длины, как у его диагонали. Например, если задана диагональ квадрата в миллиметрах, то также длина его стороны будет в миллиметрах.
Например: Задана диагональ квадрата 20 метров. При решении этой задачи мы получим: z = 20/v2, это приблизительно равно 20/1,4142. Длина стороны квадрата - 20/v2 метров, или, приблизительно, 14,142 метров.
Теперь Вы знаете, как найти длину стороны квадрата, если заданы его периметр, площадь или длина диагонали.
Когда у них одинаковые длины диагоналей, сторон и равные углы.
Свойства квадрата.
У всех 4-х сторон квадрата одинаковая длина, т.е. стороны квадрата равны:
AB = BC = CD = AD
Противолежащие стороны квадрата параллельны:
AB || CD , BC || AD
Все диагонали делят угол квадрата на две равные части, таким образом, они оказываются биссектрисами углов квадрата:
ΔABC = ΔADC = ΔBAD = ΔBCD
∠ ACB = ∠ ACD = ∠ BDC = ∠ BDA = ∠ CAB = ∠ CAD = ∠ DBC = ∠ DBA = 45°
Диагонали делят квадрат на 4 одинаковых треугольника , кроме того, полученные треугольники в одно время и равнобедренные и прямоугольные:
ΔAOB = ΔBOC = ΔCOD = ΔDOA
Диагональ квадрата.
Диагональю квадрата является всякий отрезок, который соединяет 2-е вершины противолежащих углов квадрата.
Диагональ всякого квадрата больше стороны этого квадрата в √2 раз.
Формулы для определения длины диагонали квадрата:
1. Формула диагонали квадрата через сторону квадрата:
2. Формула диагонали квадрата через площадь квадрата :
3. Формула диагонали квадрата через периметр квадрата :
4. Сумма углов квадрата = 360°:
5. Диагонали квадрата одной длины:
6. Все диагонали квадрата делят квадрат на 2-е одинаковые фигуры, которые симметричны:
7. Угол пересечения диагоналей квадрата равен 90°, пересекая друг друга, диагонали делятся на две равные части:
8. Формула диагонали квадрата через длину отрезка l:
9. Формула диагонали квадрата через радиус вписанной окружности :
R - радиус вписанной окружности;
D - диаметр вписанной окружности;
d - диагональ квадрата.
10. Формула диагонали квадрата через радиус описанной окружности:
R - радиус описанной окружности;
D - диаметр описанной окружности;
d - диагональ.
11. Формула диагонали квадрата через линию, которая выходит из угла на середину стороны квадрата:
C - линия, которая выходит из угла на середину стороны квадрата;
d - диагональ.
Вписанный круг в квадрат - это круг, примыкающий к серединам сторон квадрата и имеющий центр на пересечении диагоналей квадрата.
Радиус вписанной окружности - сторона квадрата (половина).
Площадь круга вписанного в квадрат меньше площади квадрата в π/4 раза.
Круг, описанный вокруг квадрата - это круг, который проходит через 4-ре вершины квадрата и который имеет центр на пересечении диагоналей квадрата.
Радиус окружности описанной вокруг квадрата больше радиуса вписанной окружности в √2 раз.
Радиус окружности описанной вокруг квадрата равен 1/2 диагонали.
Площадь круга описанного вокруг квадрата большая площадь того же квадрата в π/2 раз.