Сера щелочь. Соединения серы. Сероводород. Сероводородная кислота. Сульфиды

Сера щелочь. Соединения серы. Сероводород. Сероводородная кислота. Сульфиды

31.07.2023
СЕРА , S (sulfur ), неметаллический химический элемент, член семейства халькогенов (O, S, Se, Te и Po ) - IVA подгруппы периодической системы элементов. C ера, как и многие ее применения, известны с далекой древности. А.Лавуазье утверждал, что сера - это элемент. Сера жизненно необходима для роста растений и животных, она входит в состав живых организмов и продуктов их разложения, ее много, например, в яйцах, капусте, хрене, чесноке, горчице, луке, волосах, шерсти и т.д. Она присутствует также в углях и нефти. Применение . Около половины ежегодного потребления серы идет на производство таких промышленных химических продуктов, как серная кислота, диоксид серы и дисульфид углерода (сероуглерод). Кроме того, сера широко используется в производстве инсектицидов, спичек, удобрений, взрывчатых веществ, бумаги, полимеров, красок и красителей, при вулканизации каучука. Ведущее место в добыче серы занимают США, страны СНГ и Канада. Распространенность в природе . Сера встречается в свободном состоянии (самородная сера). Кроме того, имеются огромные запасы серы в виде сульфидных руд, прежде всего руд свинца (свинцовый блеск), цинка (цинковая обманка), меди (медный блеск) и железа (пирит). При извлечении металлов из этих руд освобождаются от серы обычно обжигом в присутствии кислорода, при этом образуется диоксид серы(IV), который часто выбрасывается в атмосферу без использования. Кроме сульфидных руд достаточно много серы встречается в виде сульфатов, например, сульфата кальция (гипс), сульфата бария (барит). В морской воде и многих минеральных водах присутствуют растворимые в воде сульфаты магния и натрия. В некоторых минеральных водах встречается сульфид водорода (сероводород). В промышленности серу можно получать как побочный продукт процессов в плавильных, коксовых печах, при нефтепереработке, из топочных или природных газов. Из природных подземных отложений серу добывают, расплавляя ее перегретой водой и доставляя на поверхность сжатым воздухом и насосами. Во фраш-процессе извлечения серы из сероносных отложений на установке в виде концентрических труб, запатентованной Г.Фрашем в 1891, сера получается чистотой до 99,5%. Свойства . Сера имеет вид желтого порошка или хрупкой кристаллической массы без запаха и вкуса и нерастворима в воде. Для серы характерны несколько аллотропных модификаций. Наиболее известны следующие: кристаллическая сера - ромбическая (самородная сера, a -S) и моноклинная (призматическая сера, b -S); аморфная - коллоидная (серное молоко) и пластическая; промежуточная аморфно-кристаллическая - сублимированная (серный цвет).

СВОЙСТВА СЕРЫ

Серная кислота - один из важнейших продуктов химической промышленности (производящей щелочи, кислоты, соли, минеральные удобрения, хлор). Ее получают главным образом контактным или башенным способом по принципиальной схеме:

Б льшая часть получаемой кислоты идет на производство минеральных удобрений (суперфосфат, сульфат аммония). Серная кислота служит исходным сырьем для получения солей и других кислот, для синтеза органических веществ, искусственных волокон, для очистки керосина, нефтяных масел, бензола, толоуола, при изготовлении красок, травлении черных металлов, в гидрометаллургии урана и некоторых цветных металлов, для получения моющих и лекарственных средств, как электролит в свинцовых аккумуляторах и как осушитель. Тиосерная кислота H 2 S 2 O 3 структурно аналогична серной кислоте за исключением замены одного кислорода на атом серы. Наиболее важным производным кислоты является тиосульфат натрия Na 2 S 2 O 3 - бесцветные кристаллы, образующиеся при кипячении сульфита натрия Na 2 SO 3 с серным цветом. Тиосульфат (или гипосульфит ) натрия используется в фотографии как закрепитель (фиксаж). Сульфонал (CH 3 ) 2 C(SO 2 C 2 H 5 ) 2 - белое кристаллическое вещество, без запаха, слабо растворимое в воде, является наркотиком и используется как седативное и снотворное средство. Сульфид водорода H 2 S (сероводород ) - бесцветный газ с резким неприятным запахом тухлых яиц. Он несколько тяжелее воздуха (плотность 1,189 г/дм 3 ), легко сжижается в бесцветную жидкость и хорошо растворим в воде. Раствор в воде является слабой кислотой с рН ~ 4. Жидкий сероводород используют как растворитель. Раствор и газ широко применяют в качественном анализе для отделения и определения многих металлов. Вдыхание незначительного количества сероводорода вызывает головную боль и тошноту, большие количества или непрерывное вдыхание сероводорода вызывают паралич нервной системы, сердца и легких. Паралич наступает неожиданно, в результате нарушения жизненных функций организма. Монохлорид серы S 2 Cl 2 - дымящая масляная жидкость янтарного цвета с едким запахом, слезоточивая и затрудняющая дыхание. Она дымит во влажном воздухе и разлагается водой, но растворима в сероуглероде. Монохлорид серы - хороший растворитель для серы, иода, галогенидов металлов и органических соединений. Монохлорид используется для вулканизации каучука, в производстве типографской краски и инсектицидов. При реакции с этиленом образуется летучая жидкость, известная как горчичный газ (ClC 2 H 4 ) 2 S - токсичное соединение, используемое как боевое химическое отравляющее вещество раздражающего действия. Дисульфид углерода CS 2 (сероуглерод ) - бледножелтая жидкость, ядовитая и легко воспламеняющаяся. CS 2 получают синтезом из элементов в электрической печи. Вещество нерастворимо в воде, имеет высокий коэффициент светопреломления, высокое давление паров, низкую температуру кипения (46 ° C). Сероуглерод - эффективный растворитель жиров, масел, каучука и резин - широко используют для экстракции масел, в производстве искусственного шелка, лаков, резиновых клеев и спичек, уничтожения амбарных долгоносиков и одежной моли, для дезинфекции почв. См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ . ЛИТЕРАТУРА Справочник сернокислотчика . М., 1971
Бусев А.И., Симонова Л.Н. Аналитическая химия серы . М., 1975

ОПРЕДЕЛЕНИЕ

Сера – элемент 3 периода VIA группы, относится к семейству p-элементов. Порядковый номер 16.

Электронная конфигурация 1s 2 2s 2 2p 6 3s 2 3p 4 . Символ – S . Относительная атомная масса – 32 а.е.м. Температура кипения – 444,67С, плавления – 112,85С. Неметалл.

Химические свойства серы

Сера взаимодействует с простыми веществами – неметаллами, проявляя при этом свойства восстановителя. Непосредственно сера взаимодействует только с фтором. Реакции взаимодействия с другими металлами происходят при нагревании:

S + F 2 = SF 6 ;

2S + Cl 2 = S 2 Cl 2 ;

S + Cl 2 = SCl 2 ;

5S + 2P = P 2 S 5 ;

S + H 2 = H 2 S;

S + O 2 = SO 2 ;

2S + Br 2 = S 2 Br 2 .

В реакциях взаимодействия с простыми веществами – металлами сера проявляет свойства окислителя. Эти реакции протекают при нагревании и очень бурно:

2Na + S = Na 2 S;

2Al + 3S = Al 2 S 3 ;

Сера вступает в реакции взаимодействия со сложными веществами. Она способна растворяться в концентрированных кислотах и расплавах щелочей, причем в последнем случае сера диспропорционирует. Эти реакции происходят при кипении реакционной смеси:

3S + 6KOH = K 2 SO 3 +2K 2 S + 3H 2 O;

S + 6HNO 3 = H 2 SO 4 + 6NO 2 + 2H 2 O;

S + 2H 2 SO 4 = 3SO 2 + 2H 2 O.

При взаимодействии серы с сульфидами металлов происходит образование полисульфидов:

Na 2 S + S = Na 2 S 2 .

Физические свойства серы

Сера – кристаллическое вещество желтого цвета. Существует в виде двух аллотропных модификаций – α-серы (ромбическая кристаллическая решетка) и β-серы (моноклинная кристаллическая решетка), а также аморфной формы – пластическая сера (рис. 1). В кристаллическом состоянии сера построена из неплоских циклических молекул S 8 . Сера плохо растворяется в этаноле, хорошо в сероуглероде и жидком аммиаке. Не реагирует с жидкой водой и йодом.

Рис. 1. Формы существования серы.

Получение и применение серы

В промышленных масштабах серу получают из природных месторождений самородной серы. Сера является сырьем для производства серной кислоты. Е1 используют в бумажной промышленности, в сельском хозяйстве, в производстве резины, красителей, пороха и т.д. Широкое применение сера нашла в медицине, например, сера входит в состав различных мазей и присыпок, применяемых при кожных заболеваниях и т.д.

Примеры решения задач

ПРИМЕР 1

Сера - одно из немногих веществ, которыми уже несколько тысяч дет назад оперировали первые «химики». Она стала служить человечеству задолго до того, как заняла в таблице Менделеева клетку под 16.

Об одном из самых древних (хотя и гипотетических!) применении серы рассказывают многие старинные книги. Как источник тепла при термообработке грешников серу живописуют и Новый и Ветхий заветы. И если книги такого рода не дают достаточных основании для археологических раскопок в поисках остатков райских кущ или геенны огненной, то их свидетельство о том, что древние были знакомы с серой и некоторыми ее свойствами, можно принять на веру.

Одна из причин этой известности - распространенность самородной серы в странах древнейших цивилизаций, Месторождения этого желтого горючего вещества разрабатывались греками и римлянами, особенно в Сицилии, которая вплоть до конца прошлого века славилась в основном серой.

С древнейших времен серу использовали для религиозно-мистических целей, ее зажигали при различных церемониях и ритуалах. Но так же давно элемент № 16 приобрел и вполне мирские назначения: серой чернили оружие, ее употребляли при изготовлении- косметических и лекарственных мазей, ее жгли для отбелки тканей и для борьбы с насекомыми. Добыча серы значительно увеличилась после того, как был изобретён черный порох. Ведь сера (вместе с углем и селитрой)-непременный его компонент.

И сейчас пороховое производство потребляет часть добываемой серы, правда весьма незначительную. В наше время сера - один из важнейших видов сырья для многих химических производств. И в этом причина непрерывного роста мирового производства серы.

Происхождение серы

Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы - это порода с вкраплениями чистой серы.

Когда образовались эти вкрапления - одновременно с сопутствующими породами или позже? От ответа на этот вопрос зависит направление поисковых и разведочных работ. Но, несмотря на тысячелетия общения с серой, человечество до сих пор не имеет однозначного ответа. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.

Теория сингенеза (т. е. одновременного образования серы и вмещающих пород) предполагает, что образование самородной серы происходило в мелководных бассейнах. Особые бактерии восстанавливали сульфаты, растворенные в воде, до сероводорода, который поднимался вверх, попадал в окислительную зону и здесь химическим путем или при участии других бактерий окислялся до элементарной серы. Сера осаждалась на дно, и впоследствии содержащий серу ил образовал руду.

Теория эпигенеза (вкрапления серы образовались позднее, чем основные породы) имеет несколько вариантов. Самый распространенный из них предполагает, что подземные воды, проникая сквозь толщи пород, обогащаются сульфатами. Если такие воды соприкасаются с месторождениями нефти или природного газа, то ионы сульфатов восстанавливаются углеводородами до сероводорода. Сероводород поднимается к поверхности и, окисляясь, выделяет чистую серу в пустотах и трещинах пород.

В последние десятилетия находит все новые подтверждения одна из разновидностей теории эпигенеза - теория метасоматоза (в переводе с греческого «метасоматоз» означает замещение). Согласно ей в недрах постоянно происходит превращение гипса CaSO4-H2O и ангидрита CaSО4 в серу и кальцит СаСО3. Эта теория создана в 1935 году советскими учеными Л. М. Миропольским и Б. П. Кротовым. В ее пользу говорит, в частности, такой факт.

В 1961 году в Ираке было открыто месторождение Мишрак. Сера здесь заключена в карбонатных породах, которые образуют свод, поддерживаемый уходящими вглубь опорами (в геологии их называют крыльями). Крылья эти состоят в основном из ангидрита и гипса. Такая же картина наблюдалась на отечественном месторождении Шор-Су.

Геологическое своеобразие этих месторождений можно объяснить только с позиций теории метасоматоза: первичные гипсы и ангидриты превратились во вторичные карбонатные руды с вкраплениями самородной серы. Важно не только соседство минералов - среднее содержание серы в руде этих месторождений равно содержанию химически связанной серы в ангидрите. А исследования изотопного состава серы и углерода в руде этих месторождений дали сторонникам теории метасоматоза дополнительные аргументы.

Но есть одно «но»: химизм процесса превращения гипса в серу и кальцит пока не ясен, и потому нет оснований считать теорию метасоматоза единственно правильной. На земле и сейчас существуют озера (в частности, Серное озеро близ Серноводска), где происходит сингенетическое отложение серы и сероносный ил не содержит пи гипса, ни ангидрита.

Все это означает, что разнообразие теорий и гипотез о происхождении самородной серы - результат не только и не столько неполноты наших знаний, сколько сложности явлений, происходящих в недрах. Еще из элементарной школьной математики все мы знаем, что к одному результату могут привести разные пути. Этот закон распространяется и на геохимию.

Добыча серы

Серные руды добывают разными способами-в зависимости от условий залегания. Но в любом случае приходится уделять много внимания технике безопасности. Залежам серы почти всегда сопутствуют скопления ядовитых газов - соединений серы. К тому же нельзя забывать о возможности ее самовозгорания.

Добыча руды открытым способом происходит так. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на обогатительную фабрику, а оттуда-на сероплавильный завод, где из концентрата извлекают серу. Методы извлечения-различны. О некоторых из них будет рассказано ниже. А здесь уместно кратко описать скважинный метод добычи серы из-под земли, позволивший Соединенным Штатам Америки и Мексике стать крупнейшими поставщиками серы.

В конце прошлого века на юге Соединенных Штатов были открыты богатейшие месторождения серной руды. Но подступиться к пластам было непросто: в шахты (а именно шахтным способом предполагалось разрабатывать месторождение) просачивался сероводород и преграждал доступ к сере. Кроме того, пробиться к сероносным пластам мешали песчаные плывуны. Выход нашел химик Герман Фраш, предложивший плавить серу под" землей и через скважины, подобные нефтяным, выкачивать ее на поверхность. Сравнительно невысокая (меньше 120° С) температура плавления серы подтверждала реальность идеи Фраша. В 1890 году начались испытания, приведшие к успеху.

В принципе установка Фраша очень несложна: труба в трубе. В пространство между трубами подается перегретая вода и по нему идет в пласт. А по внутренней, обогреваемой со всех сторон, трубе поднимается расплавленная сера. Современный вариант установки Фраша дополнен третьей - самой узкой трубой. Через нее в скважину подается сжатый воздух, который помогает поднять расплавленную серу на поверхность. Одно из основных достоинств метода Фраша - в том, что он позволяет уже на первой стадии добычи получить сравнительно чистую серу. При разработке богатых руд этот метод весьма эффективен.

Раньше считалось, что метод подземной выплавки серы применим только в специфических условиях «соляных куполов» тихоокеанского побережья США и Мексики. Однако опыты, проведенные в Польше и СССР, опровергли это мнение. В народной Польше этим методом уже добывают большое количество серы; в 1968. году пущены первые серные скважины и в СССР.

А руду, полученную в карьерах и шахтах, приходится перерабатывать (часто с предварительным обогащением), используя для этого различные технологические приемы.

Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.

Термические методы извлечения серы - самые старью. Еще в XVIII веке в Неаполитанском королевстве выплавляли серу в кучах -«сольфатарах». До сих пор в Италии выплавляют серу в примитивных печах - «калькаронах». Тепло, необходимое для выплавления серы из руды, получают, сжигая часть добытой серы. Процесс этот малоэффективен, потери достигают 45%.

Италия стала родиной и пароводяных методов извлечения серы из руд. В 1859 году Джузеппе Джилль получил патент на свой аппарат - предшественник нынешних автоклавов. Автоклавный метод (значительно усовершенствованный, конечно) используется и сейчас во многих странах.

В автоклавном процессе обогащенный концентрат серной руды, содержающий до 80% серы, в виде жидкой пульпы с реагентами подается насосами в автоклав. Туда же под давлением подается водяной пар. Пульпа нагревается до 130° С. Сера, содержащаяся в концентрате, плавится и отделяется от породы. После недолгого отстоя выплавленная сера сливается. Затем из автоклава выпускаются «хвосты»-взвесь пустой породы в воде? Хвосты содержат довольно много серы и вновь поступают на обогатительную фабрику.

В России автоклавный способ был впервые применен инженером К. Г. Паткановым в 1896 году.

Современные автоклавы - это огромные аппараты высотой с четырехэтажный дом. Такие автоклавы установлены, в частности, на сероплавильном заводе Роздольского горнохимического комбината в Прикарпатье.

На некоторых производствах, например на крупном серном комбинате в Тарнобжеге (Польша), пустую породу отделяют от расплавленной серы на специальных фильтрах. Метод разделения на специальных центрифугах разработан недавно в нашей стране. Словом, «руду золотую (точнее - золотистую) отделять от породы пустой» можно по-разному.

По-разному и удовлетворяют свои потребности в сере разные страны. Мексика и США используют в основном метод Фраша. Италия, занимающая по добыче серы третье место среди капиталистических государств, продолжает добывать и перерабатывать (разными методами) серные руды сицилийских месторождений и провинции Марко. У Японии есть значительные запасы серы вулканического происхождения. Франция и Канада, не имеющие самородной серы, развили крупное производство, ее из газов. Нет собственных серных месторождений и в Англии и Германии. Свои потребности в серной кислоте они покрывают за счёт переработки серусодержащего сырья (преимущественно пирита), а элементарную серу импортируют.

Россия полностью удовлетворяют свои потребности благодаря собственным источникам сырья. После открытия и освоения богатых Прикарпатских месторождений СССР и Польша значительно увеличили производство серы. Эта отрасль промышленности продолжает развиваться. Были построены новые крупные предприятия на Украине, реконструированы старые комбинаты на Волге и в Туркмении, расширено производство серы из природного газа и отходящих газов.

Кристаллы в макромолекулы

В том, что сера-самостоятельный химический элемент, а не соединение, первым убедился великий французский химик Антуан Лоран Лавуазье в XVIII веке.

С тех пор представления о сере как элементе изменились не очень сильно но значительно углубились и дополнились.

Сейчас известно, что элемент № 16 состоит из смеси четырех устойчивых изотопов с массовыми числами 32, 33, 34 и 36. Это типичный неметалл.

Лимонно-желтые кристаллы чистой серы полупрозрачны. Форма кристаллов не всегда одинакова. Чаще всего встречается ромбическая сера (наиболее устойчивая модификация) - кристаллы имеют вид октаэдров со срезанными углами. В эту модификацию при комнатной (или близкой к комнатной) температуре превращаются все прочие модификации. Известно, например, что при кристаллизации из раплава (температура плавления серы 119,5° С) сначала получаются игольчатые кристаллы (моноклинная форма). Но эта модификация неустойчива, и при температуре ниже 95,6° С она переходит в ромбическую. Подобный процесс происходит и с другими модификациями серы.

Напомним известный опыт - получение пластической серы.

Если расплавленную серу вылить в холодную воду, образуется эластичная, во многом похожая на резину масса. Ее можно получить и в виде нитей. Но проходит несколько дней, и масса перекристаллизуется, становится жесткой и ломкой.

Молекулы кристаллов серы всегда состоят из восьми атомов (S8), а различие в свойствах модификаций серы объясняется полиморфизмом - неодинаковым строением кристаллов. Атомы в молекуле серы построены в замкнутый цикл

При плавлении связи в цикле рвутся, и циклические молекулы превращаются в линейные.

Необычному поведению серь при плавлении даются различные толкования. Одно из них - такое. При температуре от 155 до 187°, по-видимому, происходит значительный рост молекулярного веса, это подтверждается многократным увеличением вязкости. При 187° С вязкость расплава достигает чуть ли ни тысячи пуаз, получается почти твердое вещество. Дальнейший рост температуры приводит к уменьшению вязкости (молекулярный вес падает). При 300° С сера вновь переходит в текучее состояние, а при 444,6° С закипает.

У паров серы с повышением температуры число атомов в молекуле постепенно уменьшается:

S8 -> S6-> S4 ->S2. При 1700°С пары серы одноатомны.

Коротко о соединениях серы

По распространенности элемент, № 16 занимает -15-е место. Содержание серы в земной коре составляет 0,05% по весу. Это немало.

К тому же сера химически активна и вступает" в реакции с большинством элементов. Поэтому в природе сера встречается не только в свободном состоянии, но и в виде разнообразных неорганических соединений. Особенно распространены сульфаты, (главным образом щелочных и щелочноземельных, металлов) и сульфиды (железа, меди, цинка, свинца). Сера есть и в углях, сланцах, нефти, природных газах, в организмах животных и растений.

При взаимодействии серы с металлами, как правило, выделяется довольно много тепла. В реакциях с кислородом сера дает несколько окислов, из них самые важные SО2 и SО3 - ангидриды сернистой Н2SО3 и серной Н2SО4 кислот. Соединение серы с водородом - сероводород Н2S - очень ядовитый, зловонный газ, всегда присутствующий в местах гниения органических остатков. Земная

кора в местах, расположенных близ месторождений серы, часто содержит довольно значительные количества сероводорода. В водном растворе этот газ обладает кислотными свойствами. Хранить его растворы на воздухе нельзя, он окисляется с выделением серы:

2H2S + О2=2Н2О + 2S.

Сероводород - сильный восстановитель. Этим его свойством пользуются во многих химических производствах.

Для чего нужна сера

Среди вещей, окружающих нас, мало таких, для изготовления которых не нужны были бы сера и ее соединения. Бумага и резина, эбонит и спички, ткани и лекарства, косметика и пластмассы, взрывчатка и краска, удобрения и ядохимикаты - вот далеко не полный перечень вещей и веществ, для производства которых нужен элемент № 16. Для того чтобы изготовить, например, автомобиль, нужно израсходовать около 14 кг серы. Можно без преувеличения сказать, что промышленный потенциал страны довольно точно определяется потреблением серы.

Значительную часть мировой добычи серы поглощает бумажная промышленность (соединения серы помогают выделить целлюлозу). Для того чтобы произвести одну тонну целлюлозы, нужно затратить более 100 кг серы. Много элементарной серы потребляет и резиновая промышленность - для вулканизации каучуков.

В сельском хозяйстве сера применяется как в элементарном виде, так и в различных соединениях. Она входит в состав минеральных удобрений и препаратов для борьбы с вредителями. Наряду с фосфором, калием и другими элементами сера необходима растениям. Впрочем, большая часть вносимой в почву серы не усваивается ими, но помогает усваивать фосфор. Серу вводят в почву вместе с фосфоритной мукой. Имеющиеся в почве бактерии окисляют ее, образующиеся серная и сернистая кислоты реагируют с фосфоритами, и в результате получаются фосфорные соединения, хорошо усваиваемые растениями.

Однако основной потребитель серы - химическая промышленность. Примерно половина добываемой в мире серы идет на производство серной кислоты. Чтобы получить одну тонну H2SО4, нужно сжечь около 300 кг серы. А роль серной кислоты: в химической промышленности сравнима с ролью хлеба в нашем питании.

Значительное количество серы (и серной кислоты) расходуется при производстве взрывчатых веществ и спичек. Чистая» освобожденная от примесей сера нужна для производства красителей и светящихся составов.

Соединения серы находят применение в нефтехимической промышленности. В частности, они необходимы при. -производстве антидетонаторов, смазочных веществ для аппаратуры сверхвысоких давлений; в охлаждающих маслах, ускоряющих обработку.металла, содержится иногда до 18% серы.

Перечисление примеров, подтверждающих первостепенную важность элемента № 16, можно было бы продолжить, но «нельзя объять необъятное». Поэтому вскользь упомянем, что сера необходима и таким отраслям промышленности, как горнодобывающая, пищевая, текстильная, и - поставим точку.

Наш век считается веком «экзотических» материалов - трансурановых элементов, титана, полупроводников, и так далее. Но внешне непритязательный, давно известный элемент № 16 продолжает оставаться абсолютно необходимым. Подсчитано, что в производстве 88 из 150 важнейших химических продуктов используют либо саму серу, либо ее соединения.

Реферат по химии

Тема: «Сера»

Ученицы 9 «ч» класса

Средней школы № 27

Зима Анны

Характеристика химического элемента №16 (Сера)

1.История открытия элемента.

2.Распростронение элемента в природе.

3.Физические свойства.

4.Химические свойства.

5.Получение.

6.Применение.

История открытия элемента. Сера (англ. Sulfur, франц. Sufre, нем. Schwefel) в самородном состоянии, а также в виде сернистых соединений известна с самых древнейших времен. С запахом горящей серы, удушающим действием сернистого газа и отвратительным запахом сероводорода человек познакомился, вероятно, еще в доисторические времена. Именно из-за этих свойств сера использовалась жрецами в составе священных курений при религиозных обрядах. Сера считалась произведением сверхчеловеческих существ из мира духов или подземных богов. Очень давно сера стала применяться в составе различных горючих смесей для военных целей. Уже у Гомера описаны "сернистые испарения", смертельное действие выделений горящей серы. Сера, вероятно, входила в состав "греческого огня", наводившего ужас на противников. Около VIII в. китайцы стали использовать ее в пиротехнических смесях, в частности, в смеси типа пороха. Горючесть серы, легкость, с которой она соединяется с металлами с образованием сульфидов (например, на поверхности кусков металла), объясняют то, что ее считали "принципом горючести" и обязательной составной частью металлических руд. Пресвитер Теофил (XI в.) описывает способ окислительного обжига сульфидной медной руды, известный, вероятно, еще в древнем Египте. В период арабской алхимии возникла ртутно-серная теория состава металлов, согласно которой сера почиталась обязательной составной частью (отцом) всех металлов. В дальнейшем она стала одним из трех принципов алхимиков, а позднее "принцип горючести" явился основой теории флогистона. Элементарную природу серы установил Лавуазье в своих опытах по сжиганию. С введением пороха в Европе началось развитие добычи природной серы, а также разработка способа получения ее из пиритов; последний был распространен в древней Руси. Впервые в литературе он описан у Агриколы. Происхождение лат. Sulfur неясно. Полагают, что это название заимствовано от греков. В литературе алхимического периода сера часто фигурирует под различными тайными названиями. У Руланда можно найти, например, названия Zarnec (объяснение "яйца с огнем"), Thucios (живая сера), Terra foetida, spiritus foetens, Scorith, Pater и др. Древнерусское название "сера" употребляется уже очень давно. Под ним подразумевались разные горючие и дурно пахнущие вещества, смолы, физиологические выделения (сера в ушах и пр.). По-видимому, это название происходит от санскритского сirа (светло-желтый). С ним связано слово "серый", т. е. неопределенного цвета, что, в частности, относится к смолам. Второе древнерусское название серы - жупел (сера горючая) - тоже содержит в себе понятие не только горючести, но и дурного запаха. Как объясняют филологи, нем. Schwefel имеет санскритский корень swep (спать, англо-саксонское sweblan - убивать), что, возможно, связано с ядовитыми свойствами сернистого газа.(3)

Распространение элемента в природе. Сера широко распространена в природе. Она составляет 0,05% массы земной коры. В свободном состоянии (самородная сера) в больших количествах встречается в Италии (острова Сицилия) и США. Месторождения самородной серы имеются в Поволжье, в государствах Средней Азии, в Крыму и других районах.

Сера часто встречается в виде соединений с другими элементами. Важнейшими ее природными соединениями являются сульфиды металлов: FeS 2 - железный колчедан, или пирит; ZnS - цинковая обманка; PbS - свинцовый блеск; HgS - киноварь и др., а также соли серной кислоты (кристаллогидраты): СаSO 4Ч 2Н 2 O - гипс, Na 2 SO 4 Ч 10H 2 O - глауберова соль, МgSО 4 Ч 7H 2 O - горькая соль и др.(2)

Физические свойства. Сера - твердое хрупкое вещество желтого цвета. В воде практически нерастворима, но хорошо растворяется в сероуглероде, анилине и некоторых других растворителях. Плохо проводит теплоту и электричество. Сера образует несколько аллотропных модификаций - сера ромбическая, моноклинная, пластическая. Наиболее устойчивой модификацией является ромбическая сера, в нее самопроизвольно через некоторое время превращаются все остальные модификации.

При 444,6 °С сера кипит, образуя пары темно-бурого цвета. Если их быстро охладить, то получается тонкий порошок, состоящий из мельчайших кристаллов серы, называемый серным цветом.

Природная сера состоит из смеси четырех устойчивых изотопов:

Температура плавления, ° С 112,8 . Температура кипения, ° С 444,6

Химические свойства. Сера может отдавать свои электроны при взаимодействии с более сильными окислителями:

В этих реакциях сера является восстановителем. Нужно подчеркнуть, что оксид серы (VI) может образовываться только в присутствии Pt или V 2 O 5 и высоком давлении .

При взаимодействии с металлами сера проявляет окислительные свойства:

С большинством металлов сера реагирует при нагревании, но в реакции со ртутью взаимодействие происходит уже при комнатной температуре. Это обстоятельство используется в лабораториях для удаления разлитой ртути, пары которой являются сильным ядом.(3)

Несколько примеров соединений серы.

Сероводород . При нагревании серы с водородом происходит обратимая реакция с очень малым выходом сероводорода H 2 S. Обычно Н 2 S получают действием разбавленных кислот на сульфиды:

Эту реакцию часто проводят в аппарате Киппа.

Сероводород - типичный восстановитель. В кислороде он сгорает. Раствор сероводорода в воде представляет собой очень слабую сероводородную кислоту, которая диссоциирует ступенчато и в основном по первой ступени:

Сероводородная кислота, так же как и сероводород, - типичный восстановитель.

Сероводородная кислота окисляется не только сильными окислителями, например хлором, но и более слабыми, например сернистой кислотой H 2 SO 3 или ионами трехвалентного железа:

Сульфиды. Например, Na 2 S - сульфид натрия, NaHS - гидросульфид натрия.

Гидросульфиды почти все хорошо растворимы в воде. Сульфиды щелочных и щелочно-земельных металлов также растворимы в воде, а остальных металлов практически нерастворимы или мало растворимы; некоторые из них не растворяются и в разбавленных кислотах. Поэтому такие сульфиды можно легко получить, пропуская сероводород через соли соответствующего металла.

Некоторые сульфиды имеют характерную окраску: CuS и PbS - черную, CdS - желтую, ZnS - белую, MnS - розовую, SnS - коричневую, Sb 2 S 3 - оранжевую и т. д. На различной растворимоcти сульфидов и различной окраске многих из них основан качественный анализ катионов.(4)

Оксид серы (IV). Оксид серы (IV), или сернистый газ, при обычных условиях - бесцветный газ с резким, удушливым запахом. При охлаждении до -10° С сжижается в бесцветную жидкость. В жидком виде его хранят в стальных баллонах.

SO 2 образуется при сжигании серы в кислороде или при обжиге сульфидов. Он хорошо растворим в воде (40 объемов в 1 объеме воды при 20 °С).

Оксид серы (VI). SO 3 - ангидрид серной кислоты - вещество с t пл = 16,8 °С и t кип = 44,8 °С. Оксид серы (VI), или триоксид серы, - это бесцветная жидкость, затвердевающая при температуре ниже 17° С в твердую кристаллическую массу. Оксид серы (VI) обладает всеми свойствами кислотных оксидов. Он является промежуточным продуктом производства серной кислоты.

Оксид серы (VI) получают окислением SO 2 кислородом только в присутствии катализатора:

Необходимость использования катализатора в этой обратимой реакции обусловлена тем, что хороший выход SO 3 (т. е. смещение равновесия вправо) можно получить только при понижении температуры, однако при низких температурах очень сильно падает скорость протекания реакции.

Молекула SO 3 имеет форму треугольника, в центре которого находится атом серы:

Такое строение обусловлено взаимным отталкиванием связывающих электронных пар. На их образование атом серы предоставил все шесть внешних электронов.

Серная кислота. Оксид серы (VI) энергично соединяется с водой, образуя серную кислоту:

SO 3 очень хорошо растворяется в 100%-ной серной кислоте. Раствор 80з в такой кислоте называется олеумом.

Соли серной кислоты. Серная кислота, будучи двухосновной, образует два ряда солей: средние, называемые сульфатами , и кислые, называемые гидросульфатами . Сульфаты образуются при полной нейтрализации кислоты щелочью (на один моль кислоты приходится два моля щелочи), а гидросульфаты - при недостатке щелочи (на один моль кислоты - один моль щелочи):

Многие соли серной кислоты имеют большое практическое значение.(2)

Получение. Самородная сера содержит посторонние вещества, для отделения которых пользуются способностью серы легко плавиться. Однако сера, полученная выплавкой из руды (комовая сера), обычно содержит еще много примесей. Дальнейшую ее очистку производят перегонкой в рафинировочных печах, где сера нагревается до кипения. Пары серы поступают в выложенную кирпичом камеру. Вначале, пока камера холодная, сера прямо переходит в твердое состояние и осаждается на стенках в виде светло-желтого порошка ( серный цвет ). Когда камера нагреется выше 120°C, пары конденсируются в жидкость, которую выпускают из камеры в формы, где она и застывает в виде палочек. Полученная таким образом сера называется черенковой .

Важным источником получения серы служит железный колчедан FeS 2 , называемый также пиритом , и полиметаллические руды, содержащие сернистые соединения меди, цинка и других цветных металлов. Некоторое количество серы (газовая сера) получают из газов, образующихся при коксовании и газификации угля.(4)

Применение. Около половины ежегодного потребления серы идет на производство таких промышленных химических продуктов, как серная кислота, диоксид серы и дисульфид углерода (сероуглерод). Кроме того, сера широко используется в производстве инсектицидов, спичек, удобрений, взрывчатых веществ, бумаги, полимеров, красок и красителей, при вулканизации каучука. Ведущее место в добыче серы занимают США, страны СНГ и Канада.

Сера содержится в организмах животных и растений, так как входит в состав белковых молекул. Органические соединения серы содержатся в нефти.(3)

Литература.

1. Справочник сернокислотчик .1971г. А.И Бусев., Л.Н.Симонова (www.krugosvet.ru).

2. Основы общей химии. М.: Химия, 1967. Б.В.Некрасов

3. Химия для поступающих в вузы. 1993г. Г.П.Хомченко

4. Общая и неорганическая химия. 1981г. Н.С.Ахметов.

Сера – элемент 3‑го периода и VIA‑группы Периодической системы, порядковый номер 16, относится к халькогенам. Электронная формула атома [ 10 Ne]3s 2 3p 4 , характерные степени окисления 0, ‑II, +IV и +VI, состояние S VI считается устойчивым.

Шкала степеней окисления серы:

Электроотрицательность серы равна 2,60, для нее характерны неметаллические свойства. В водородных и кислородных соединениях находится в составе различных анионов, образует кислородсодержащие кислоты и их соли, бинарные соединения.

В природе – пятнадцатый по химической распространенности элемент (седьмой среди неметаллов). Встречается в свободном (самородном) и связанном виде. Жизненно важный элемент для высших организмов.

Сера S. Простое вещество. Желтая кристаллическая (α‑ромбическая и β‑моноклинная,

при 95,5 °C) или аморфная (пластическая). В узлах кристаллической решетки находятся молекулы S 8 (неплоские циклы типа «корона»), аморфная сера состоит из цепей S n . Низкоплавкое вещество, вязкость жидкости проходит через максимум при 200 °C (разрыв молекул S 8 , переплетение цепей S n). В паре – молекулы S 8 , S 6 , S 4 , S 2 . При 1500 °C появляется одноатомная сера (в химических уравнениях для простоты любая сера изображается как S).

Сера не растворяется в воде и при обычных условиях не реагирует с ней, хорошо растворима в сероуглероде CS 2 .

Сера, особенно порошкообразная, обладает высокой активностью при нагревании. Реагирует как окислитель с металлами и неметаллами:

а как восстановитель – с фтором, кислородом и кислотами (при кипячении):

Сера подвергается дисмутации в растворах щелочей:

3S 0 + 6КОН (конц.) = 2K 2 S ‑II + K 2 S IV O 3 + 3H 2 O

При высокой температуре (400 °C) сера вытесняет иод из иодоводорода:

S + 2НI (г) = I 2 + H 2 S,

но в растворе реакция идет в обратную сторону:

I 2 + H 2 S (p) = 2 HI + S↓

Получение : в промышленности выплавляется из природных залежей самородной серы (с помощью водяного пара), выделяется при десульфурации продуктов газификации угля.

Сера применяется для синтеза сероуглерода, серной кислоты, сернистых (кубовых) красителей, при вулканизации каучука, как средство защиты растений от мучнистой росы, для лечения кожных заболеваний.

Сероводород H 2 S. Бескислородная кислота. Бесцветный газ с удушающим запахом, тяжелее воздуха. Молекула имеет строение дважды незавершенного тетраэдра [::S(H) 2 ]

(sp 3 ‑гибридизация, валетный угол Н – S–Н далек от тетраэдрического). Неустойчив при нагревании выше 400 °C. Малорастворим в воде (2,6 л/1 л Н 2 O при 20 °C), насыщенный раствор децимолярный (0,1М, «сероводородная вода»). Очень слабая кислота в растворе, практически не диссоциирует по второй стадии до ионов S 2‑ (максимальная концентрация S 2‑ равна 1 10 ‑13 моль/л). При стоянии на воздухе раствор мутнеет (ингибитор – сахароза). Нейтрализуется щелочами, не полностью – гидратом аммиака. Сильный восстановитель. Вступает в реакции ионного обмена. Сульфидирующий агент, осаждает из раствора разноокрашенные сульфиды с очень малой растворимостью.

Качественные реакции – осаждение сульфидов, а также неполное сгорание H 2 S с образованием желтого налета серы на внесенном в пламя холодном предмете (фарфоровый шпатель). Побочный продукт очистки нефти, природного и коксового газа.

Применяется в производстве серы, неорганических и органических серосодержащих соединений как аналитический реагент. Чрезвычайно ядовит. Уравнения важнейших реакций:

Получение : в промышленности – прямым синтезом:

Н 2 + S = H 2 S (150–200 °C)

или при нагревании серы с парафином;

в лаборатории – вытеснением из сульфидов сильными кислотами

FeS + 2НCl (конц.) = FeCl 2 + H 2 S

или полным гидролизом бинарных соединений:

Al 2 S 3 + 6Н 2 O = 2Al(ОН) 3 ↓ + 3H 2 S

Сульфид натрия Na 2 S. Бескислородная соль. Белый, очень гигроскопичный. Плавится без разложения, термически устойчивый. Хорошо растворим в воде, гидролизуется по аниону, создает в растворе сильнощелочную среду. При стоянии на воздухе раствор мутнеет (коллоидная сера) и желтеет (окраска полисульфида). Типичный восстановитель. Присоединяет серу. Вступает в реакции ионного обмена.

Качественные реакции на ион S 2‑ – осаждение разноокрашенных сульфидов металлов, из которых MnS, FeS, ZnS разлагаются в НCl (разб.).

Применяется в производстве сернистых красителей и целлюлозы, для удаления волосяного покрова шкур при дублении кож, как реагент в аналитической химии.

Уравнения важнейших реакций:

Na 2 S + 2НCl (разб.) = 2NaCl + H 2 S

Na 2 S + 3H 2 SO 4 (конц.) = SO 2 + S↓ + 2H 2 O + 2NaHSO 4 (до 50 °C)

Na 2 S + 4HNO 3 (конц.) = 2NO + S↓ + 2H 2 O + 2NaNO 3 (60 °C)

Na 2 S + H 2 S (насыщ.) = 2NaHS

Na 2 S (т) + 2O 2 = Na 2 SO 4 (выше 400 °C)

Na 2 S + 4H 2 O 2 (конц.) = Na 2 SO 4 + 4H 2 O

S 2‑ + M 2+ = MnS (телесн.)↓; FeS (черн.)↓; ZnS (бел.)↓

S 2‑ + 2Ag + = Ag 2 S (черн.)↓

S 2‑ + M 2+ = СdS (желт.)↓; PbS, CuS, HgS (черные)↓

3S 2‑ + 2Bi 3+ = Bi 2 S 3 (кор. – черн.)↓

3S 2‑ + 6H 2 O + 2M 3+ = 3H 2 S + 2M(OH) 3 ↓ (M = Al, Cr)

Получение в промышленности – прокаливание минерала мирабилит Na 2 SO 4 10Н 2 O в присутствии восстановителей:

Na 2 SO 4 + 4Н 2 = Na 2 S + 4Н 2 O (500 °C, кат. Fe 2 O 3)

Na 2 SO 4 + 4С (кокс) = Na 2 S + 4СО (800–1000 °C)

Na 2 SO 4 + 4СО = Na 2 S + 4СO 2 (600–700 °C)

Сульфид алюминия Al 2 S 3 . Бескислородная соль. Белый, связь Al – S преимущественно ковалентная. Плавится без разложения под избыточным давлением N 2 , легко возгоняется. Окисляется на воздухе при прокаливании. Полностью гидролизуется водой, не осаждается из раствора. Разлагается сильными кислотами. Применяется как твердый источник чистого сероводорода. Уравнения важнейших реакций:

Al 2 S 3 + 6Н 2 O = 2Al(ОН) 3 ↓ + 3H 2 S (чистый)

Al 2 S 3 + 6НCl (разб.) = 2AlCl 3 + 3H 2 S

Al 2 S 3 + 24HNO 3 (конц.) = Al 2 (SO 4) 3 + 24NO 2 + 12H 2 O (100 °C)

2Al 2 S 3 + 9O 2 (воздух) = 2Al 2 O 3 + 6SO 2 (700–800 °C)

Получение : взаимодействие алюминия с расплавленной серой в отсутствие кислорода и влаги:

2Al + 3S = AL 2 S 3 (150–200 °C)

Сульфид железа (II) FeS. Бескислородная соль. Черно‑серый с зеленым оттенком, тугоплавкий, разлагается при нагревании в вакууме. Во влажном состоянии чувствителен к кислороду воздуха. Нерастворим в воде. Не выпадает в осадок при насыщении растворов солей железа(II) сероводородом. Разлагается кислотами. Применяется как сырье в производстве чугуна, твердый источник сероводорода.

Соединение железа(III) состава Fe 2 S 3 не известно (не получено).

Уравнения важнейших реакций:

Получение:

Fe + S = FeS (600 °C)

Fe 2 O 3 + H 2 + 2H 2 S = 9FeS + 3H 2 O (700‑1000 °C)

FeCl 2 + 2NH 4 HS (изб.) = FeS ↓ + 2NH 4 Cl + H 2 S

Дисульфид железа FeS 2 . Бинарное соединение. Имеет ионное строение Fe 2+ (–S – S–) 2‑ . Темно‑желтый, термически устойчивый, при прокаливании разлагается. Нерастворим в воде, не реагирует с разбавленными кислотами, щелочами. Разлагается кислотами‑окислителями, подвергается обжигу на воздухе. Применяется как сырье в производстве чугуна, серы и серной кислоты, катализатор в органическом синтезе. В природе – рудные минералы пирит и марказит.

Уравнения важнейших реакций:

FeS 2 = FeS + S (выше 1170 °C, вакуум)

2FeS 2 + 14H 2 SO 4 (конц., гор.) = Fe 2 (SO 4) 3 + 15SO 2 + 14Н 2 O

FeS 2 + 18HNO 3 (конц.) = Fe(NO 3) 3 + 2H 2 SO 4 + 15NO 2 + 7H 2 O

4FeS 2 + 11O 2 (воздух) = 8SO 2 + 2Fe 2 O 3 (800 °C, обжиг)

Гидросульфид аммония NH 4 HS. Бескислородная кислая соль. Белый, плавится под избыточным давлением. Весьма летучий, термически неустойчивый. На воздухе окисляется. Хорошо растворим в воде, гидролизуется по катиону и аниону (преобладает), создает щелочную среду. Раствор желтеет на воздухе. Разлагается кислотами, в насыщенном растворе присоединяет серу. Щелочами не нейтрализуется, средняя соль (NH 4) 2 S не существует в растворе (условия получения средней соли см. в рубрике «H 2 S»). Применяется в качестве компонента фотопроявителей, как аналитический реагент (осадитель сульфидов).

Уравнения важнейших реакций:

NH 4 HS = NH 3 + H 2 S (выше 20 °C)

NH 4 HS + НCl (разб.) = NH 4 Cl + H 2 S

NH 4 HS + 3HNO 3 (конц.) = S↓ + 2NO 2 + NH 4 NO 3 + 2H 2 O

2NH 4 HS (насыщ. H 2 S) + 2CuSO 4 = (NH 4) 2 SO 4 + H 2 SO 4 + 2CuS↓

Получение : насыщение концентрированного раствора NH 3 сероводородом:

NH 3 Н 2 O (конц.) + H 2 S (г) = NH 4 HS + Н 2 O

В аналитической химии раствор, содержащий равные количества NH 4 HS и NH 3 Н 2 O, условно считают раствором (NH 4) 2 S и используют формулу средней соли в записи уравнений реакций, хотя сульфид аммония полностью гидролизуется в воде до NH 4 HS и NH 3 Н 2 O.

Диоксид серы. Сульфиты

Диоксид серы SO 2 . Кислотный оксид. Бесцветный газ с резким запахом. Молекула имеет строение незавершенного треугольника [: S(O) 2 ] (sр 2 ‑гибридизация), содержит σ,π‑связи S=O. Легко сжижается, термически устойчивый. Хорошо растворим в воде (~40 л/1 л Н 2 O при 20 °C). Образует полигидрат, обладающий свойствами слабой кислоты, продукты диссоциации – ионы HSO 3 ‑ и SO 3 2‑ . Ион HSO 3 ‑ имеет две таутомерные формы – симметричную (некислотную) со строением тетраэдра (sр 3 ‑гибридизация), которая преобладает в смеси, и несимметричную (кислотную) со строением незавершенного тетраэдра [: S(O) 2 (OH)] (sр 3 ‑гибридизация). Ион SO 3 2‑ также тетраэдрический [: S(O) 3 ].

Реагирует со щелочами, гидратом аммиака. Типичный восстановитель, слабый окислитель.

Качественная реакция – обесцвечивание желто‑коричневой «йодной воды». Промежуточный продукт в производстве сульфитов и серной кислоты.

Применяется для отбеливания шерсти, шелка и соломы, консервирования и хранения фруктов, как дезинфицирующее средство, антиоксидант, хладагент. Ядовит.

Соединение состава H 2 SO 3 (сернистая кислота) не известно (не существует).

Уравнения важнейших реакций:

Растворение в воде и кислотные свойства:

Получение : в промышленности – сжигание серы в воздухе, обогащенном кислородом, и, в меньшей степени, обжиг сульфидных руд (SO 2 – попутный газ при обжиге пирита):

S + O 2 = SO 2 (280–360 °C)

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 (800 °C, обжиг)

в лаборатории – вытеснение серной кислотой из сульфитов:

BaSO 3(т) + H 2 SO 4 (конц.) = BaSO 4 ↓ + SO 2 + Н 2 O

Сульфит натрия Na 2 SO 3 . Оксосоль. Белый. При нагревании на воздухе разлагается без плавления, плавится под избыточным давлением аргона. Во влажном состоянии и в растворе чувствителен к кислороду воздуха. Хорошо растворим в воде, гидролизуется по аниону. Разлагается кислотами. Типичный восстановитель.

Качественная реакция на ион SO 3 2‑ – образование белого осадка сульфита бария, который переводится в раствор сильными кислотами (НCl, HNO 3).

Применяется как реактив в аналитической химии, компонент фотографических растворов, нейтрализатор хлора при отбеливании тканей.

Уравнения важнейших реакций:

Получение:

Na 2 CO 3 (конц.) + SO 2 = Na 2 SO 3 + CO 2

Серная кислота. Сульфаты

Серная кислота H 2 SO 4 . Оксокислота. Бесцветная жидкость, очень вязкая (маслообразная), весьма гигроскопичная. Молекула имеет искаженно‑тетраэдрическое строение (sр 3 ‑гибридизация), содержит ковалентные σ‑связи S – ОН и σπ‑связи S=O. Ион SO 4 2‑ имеет правильно‑тетраэдрическое строение . Обладает широким температурным интервалом жидкого состояния (~300 градусов). При нагревании выше 296 °C частично разлагается. Перегоняется в виде азеотропной смеси с водой (массовая доля кислоты 98,3 %, температура кипения 296–340 °C), при более сильном нагревании разлагается полностью. Неограниченно смешивается с водой (с сильным экзо ‑эффектом). Сильная кислота в растворе, нейтрализуется щелочами и гидратом аммиака. Переводит металлы в сульфаты (при избытке концентрированной кислоты в обычных условиях образуются растворимые гидросульфаты), но металлы Be, Bi, Со, Fe, Mg и Nb пассивируются в концентрированной кислоте и не реагируют с ней. Реагирует с основными оксидами и гидроксидами, разлагает соли слабых кислот. Слабый окислитель в разбавленном растворе (за счет Н I), сильный – в концентрированном растворе (за счет S VI). Хорошо растворяет SO 3 и реагирует с ним (образуется тяжелая маслообразная жидкость – олеум, содержит H 2 S 2 O 7).

Качественная реакция на ион SO 4 2‑ – осаждение белого сульфата бария BaSO 4 (осадок не переводится в раствор соляной и азотной кислотами, в отличие от белого осадка BaSO 3).

Применяется в производстве сульфатов и других соединений серы, минеральных удобрений, взрывчатых веществ, красителей и лекарственных препаратов, в органическом синтезе, для «вскрытия» (первого этапа переработки) промышленно важных руд и минералов, при очистке нефтепродуктов, электролизе воды, как электролит свинцовых аккумуляторов. Ядовита, вызывает ожоги кожи. Уравнения важнейших реакций:

Получение в промышленности :

а) синтез SO 2 из серы, сульфидных руд, сероводорода и сульфатных руд:

S + O 2 (воздух) = SO 2 (280–360 °C)

4FeS 2 + 11O 2 (воздух) = 8SO 2 + 2Fe 2 O 3 (800 °C, обжиг)

2H 2 S + 3O 2 (изб.) = 2SO 2 + 2Н 2 O (250–300 °C)

CaSO 4 + С (кокс) = СаО + SO 2 + СО (1300–1500 °C)

б) конверсия SO 2 в SO 3 в контактном аппарате:

в) синтез концентрированной и безводной серной кислоты:

Н 2 O (разб. H 2 SO 4) + SO 3 =H 2 SO 4 (конц., безводн.)

(поглощение SO 3 чистой водой с получением H 2 SO 4 не проводится из‑за сильного разогревания смеси и обратного разложения H 2 SO 4 , см. выше);

г) синтез олеума – смеси безводной H 2 SO 4 , дисерной кислоты H 2 S 2 O 7 и избыточного SO 3 . Растворенный SO 3 гарантирует безводность олеума (при попадании воды тут же образуется H 2 SO 4), что позволяет безопасно перевозить его в стальных цистернах.

Сульфат натрия Na 2 SO 4 . Оксосоль. Белый, гигроскопичный. Плавится и кипит без разложения. Образует кристаллогидрат (минерал мирабилит), легко теряющий воду; техническое название глауберова соль. Хорошо растворим в воде, не гидролизуется. Реагирует с H 2 SO 4 (конц.), SO 3 . Восстанавливается водородом, коксом при нагревании. Вступает в реакции ионного обмена.

Применяется в производстве стекла, целлюлозы и минеральных красок, как лекарственное средство. Содержится в рапе соляных озер, в частности в заливе Кара‑Богаз‑Гол Каспийского моря.

Уравнения важнейших реакций:

Гидросульфат калия KHSO 4 . Кислая оксосоль. Белый, гигроскопичный, но кристаллогидратов не образует. При нагревании плавится и разлагается. Хорошо растворим в воде, в растворе анион подвергается диссоциации, среда раствора сильнокислотная. Нейтрализуется щелочами.

Применяется как компонент флюсов в металлургии, составная часть минеральных удобрений.

Уравнения важнейших реакций:

2KHSO 4 = K 2 SO 4 + H 2 SO 4 (до 240 °C)

2KHSO 4 = K 2 S 2 O 7 + Н 2 O (320–340 °C)

KHSO 4 (разб.) + КОН (конц.) = K 2 SO 4 + Н 2 O KHSO 4 + КCl = K 2 SO 4 + НCl (450–700 °C)

6KHSO 4 + М 2 O 3 = 2KM(SO 4) 2 + 2K 2 SO 4 + 3H 2 O (350–500 °C, M = Al, Cr)

Получение : обработка сульфата калия концентрированной (более чем 6O%‑ной) серной кислотой на холоду:

K 2 SO 4 + H 2 SO 4 (конц.) = 2KHSO 4

Сульфат кальция CaSO 4 . Оксосоль. Белый, весьма гигроскопичный, тугоплавкий, при прокаливании разлагается. Природный CaSO 4 встречается в виде очень распространенного минерала гипс CaSO 4 2Н 2 O. При 130 °C гипс теряет часть воды и переходит в жжёный (штукатурный) гипс 2CaSO 4 Н 2 O (техническое название алебастр). Полностью обезвоженный (200 °C) гипс отвечает минералу ангидрит CaSO 4 . Малорастворим в воде (0,206 г/100 г Н 2 O при 20 °C), растворимость уменьшается при нагревании. Реагирует с H 2 SO 4 (конц.). Восстанавливается коксом при сплавлении. Определяет большую часть «постоянной» жесткости пресной воды (подробнее см. 9.2).

Уравнения важнейших реакций: 100–128 °C

Применяется как сырье в производстве SO 2 , H 2 SO 4 и (NH 4) 2 SO 4 , как флюс в металлургии, наполнитель бумаги. Приготовленный из жженого гипса вяжущий строительный раствор «схватывается» быстрее, чем смесь на основе Са(ОН) 2 . Затвердевание обеспечивается связыванием воды, образованием гипса в виде каменной массы. Используется жженый гипс для изготовления гипсовых слепков, архитектурно‑декоративных форм и изделий, перегородочных плит и панелей, каменных полов.

Сульфат алюминия‑калия KAl(SO 4) 2 . Двойная оксосоль. Белый, гигроскопичный. При сильном нагревании разлагается. Образует кристаллогидрат – алюжокалиевые квасцы. Умеренно растворим в воде, гидролизуется по катиону алюминия. Реагирует со щелочами, гидратом аммиака.

Применяется как протрава при крашении тканей, дубитель кож, коагулянт при очистке пресной воды, компонент составов для проклеивания бумаги, наружное кровоостанавливающее средство в медицине и косметологии. Образуется при совместной кристаллизации сульфатов алюминия и калия.

Уравнения важнейших реакций:

Сульфат хрома(III) – калия KCr(SO 4) 2 . Двойная оксосоль. Красный (гидрат темно‑фиолетовый, техническое название хрожокалиевые квасцы). При нагревании разлагается без плавления. Хорошо растворим в воде (серо‑синяя окраска раствора отвечает аквакомплексу 3+), гидролизуется по катиону хрома(III). Реагирует со щелочами, гидратом аммиака. Слабый окислитель и восстановитель. Вступает в реакции ионного обмена.

Качественные реакции на ион Cr 3+ – восстановление до Cr 2+ или окисление до желтого CrO 4 2‑ .

Применяется как дубитель кож, протрава при крашении тканей, реактив в фотографии. Образуется при совместной кристаллизации сульфатов хрома(III) и калия. Уравнения важнейших реакций:

Сульфат марганца (II) MnSO 4 . Оксосоль. Белый, при прокаливании плавится и разлагается. Кристаллогидрат MnSO 4 5Н 2 O – красно‑розовый, техническое название марганцевый купорос. Хорошо растворим в воде, светло‑розовая (почти бесцветная) окраска раствора отвечает аквакомплексу 2+ ; гидролизуется по катиону. Реагирует со щелочами, гидратом аммиака. Слабый восстановитель, реагирует с типичными (сильными) окислителями.

Качественные реакции на ион Mn 2+ – конмутация с ионом MnO 4 и исчезновение фиолетовой окраски последнего, окисление Mn 2+ до MnO 4 и появление фиолетовой окраски.

Применяется для получения Mn, MnO 2 и других соединений марганца, как микроудобрение и аналитический реагент.

Уравнения важнейших реакций:

Получение:

2MnO 2 + 2H 2 SO 4 (конц.) = 2MnSO 4 + O 2 + 2H 2 O (100 °C)

Сульфат железа (II) FeSO 4 . Оксосоль. Белый (гидрат светло‑зеленый, техническое название железный купорос), гигроскопичный. Разлагается при нагревании. Хорошо растворим в воде, в малой степени гидролизуется по катиону. Быстро окисляется в растворе кислородом воздуха (раствор желтеет и мутнеет). Реагирует с кислотами‑окислителями, щелочами, гидратом аммиака. Типичный восстановитель.

Применяется как компонент минеральных красок, электролитов в гальванотехнике, консервант древесины, фунгицид, лекарственное средство против анемии. В лаборатории чаще берется в виде двойной соли Fe(NH 4) 2 (SO 4) 2 6Н 2 O (соль Мора), более устойчивой к действию воздуха.

Уравнения важнейших реакций:

Получение:

Fe + H 2 SO 4 (разб.) = FeSO 4 + H 2

FeCO 3 + H 2 SO 4 (разб.) = FeSO 4 + CO 2 + H 2 O

7.4. Неметаллы VA‑группы

Азот. Аммиак

Азот – элемент 2‑го периода и VA‑группы Периодической системы, порядковый номер 7. Электронная формула атома [ 2 He]2s 2 2p 3 , характерные степени окисления 0, ‑III, +III и +V, реже +II, +IV и др.; состояние N v считается относительно устойчивым.

Шкала степеней окисления азота:

Азот обладает высокой электроотрицательностью (3,07), третий после F и О. Проявляет типичные неметаллические (кислотные) свойства. Образует различные кислородсодержащие кислоты, соли и бинарные соединения, а также катион аммония NH 4 + и его соли.

В природе – семнадцатый по химической распространенности элемент (девятый среди неметаллов). Жизненно важный элемент для всех организмов.

Азот N 2 . Простое вещество. Состоит из неполярных молекул с очень устойчивой σππ‑связью N ≡ N, этим объясняется химическая инертность азота при обычных условиях. Бесцветный газ без вкуса и запаха, конденсируется в бесцветную жидкость (в отличие от O 2).

Главная составная часть воздуха: 78,09 % по объему, 75,52 % по массе. Из жидкого воздуха азот выкипает раньше кислорода O 2 . Малорастворим в воде (15,4 мл/1 л Н 2 O при 20 °C), растворимость азота меньше, чем у кислорода.

При комнатной температуре N 2 реагирует только с литием (во влажной атмосфере), образуя нитрид лития Li 3 N, нитриды других элементов синтезируют при сильном нагревании:

N 2 + 3Mg = Mg 3 N 2 (800 °C)

В электрическом разряде N 2 реагирует с фтором и в очень малой степени – с кислородом:

Обратимая реакция получения аммиака протекает при 500 °C, под давлением до 350 атм и обязательно в присутствии катализатора (Fe/F 2 O 3 /FeO, в лаборатории Pt):

В соответствии с принципом Ле‑Шателье увеличение выхода аммиака должно происходить при повышении давления и понижении температуры. Однако скорость реакции при низких температурах очень мала, поэтому процесс ведут при 450–500 °C, достигая 15 %‑ного выхода аммиака. Непрореагировавшие N 2 и Н 2 возвращают в реактор и тем самым увеличивают степень протекания реакции.

Азот химически пассивен по отношению к кислотам и щелочам, не поддерживает горения.

Получение в промышленности – фракционная дистилляция жидкого воздуха или удаление из воздуха кислорода химическим путем, например по реакции 2С (кокс) + O 2 = 2СО при нагревании. В этих случаях получают азот, содержащий также примеси благородных газов (главным образом аргон).

В лаборатории небольшие количества химически чистого азота можно получить по реакции конмутации при умеренном нагревании:

N ‑III H 4 N III O 2(т) = N 2 0 + 2H 2 O (60–70 °C)

NH 4 Cl (p) + KNO 2(p) = N 2 0 + KCl + 2H 2 O (100 °C)

Применяется для синтеза аммиака, азотной кислоты и других азотсодержащих продуктов, как инертная среда проведения химических и металлургических процессов и хранения огнеопасных веществ.

Аммиак NH 3 . Бинарное соединение, степень окисления азота равна – III. Бесцветный газ с резким характерным запахом. Молекула имеет строение незавершенного тетраэдра [: N(H) 3)] (sр 3 ‑гибридизация). Наличие у азота в молекуле NH 3 донорной пары электронов на sр 3 ‑гибридной орбитали обусловливает характерную реакцию присоединения катиона водорода, при этом образуется катион аммония NH 4 + . Сжижается под избыточным давлением при комнатной температуре. В жидком состоянии ассоциирован за счет водородных связей. Термически неустойчив. Хорошо растворим в воде (более 700 л/1 л Н 2 O при 20 °C); доля в насыщенном растворе равна = 34 % по массе и = 99 % по объему, рН = 11,8.

Весьма реакционноспособный, склонен к реакциям присоединения. Crорает в кислороде, реагирует с кислотами. Проявляет восстановительные (за счет N ‑III) и окислительные (за счет Н I) свойства. Осушается только оксидом кальция.

Качественные реакции – образование белого «дыма» при контакте с газообразным НCl, почернение бумажки, смоченной раствором Hg 2 (NO 3) 2 .

Промежуточный продукт при синтезе HNO 3 и солей аммония. Применяется в производстве соды, азотных удобрений, красителей, взрывчатых веществ; жидкий аммиак – хладагент. Ядовит.

Уравнения важнейших реакций:

Получение : в лаборатории – вытеснение аммиака из солей аммония при нагревании с натронной известью (NaOH + СаО):

или кипячение водного раствора аммиака с последующим осушением газа.

В промышленности аммиак синтезируют из азота (см.) с водородом. Выпускается промышленностью либо в сжиженном виде, либо в виде концентрированного водного раствора под техническим названием аммиачная вода.

Гидрат аммиака NH 3 Н 2 O. Межмолекулярное соединение. Белый, в кристаллической решетке – молекулы NH 3 и Н 2 O, связанные слабой водородной связью H 3 N… НОН. Присутствует в водном растворе аммиака, слабое основание (продукты диссоциации – катион NH 4 ‑ и анион ОН ‑). Катион аммония имеет правильно‑тетраэдрическое строение (sp 3 ‑гибридизация). Термически неустойчив, полностью разлагается при кипячении раствора. Нейтрализуется сильными кислотами. Проявляет восстановительные свойства (за счет N III) в концентрированном растворе. Вступает в реакции ионного обмена и комплексообразования.

Качественная реакция – образование белого «дыма» при контакте с газообразным НCl.

Применяется для создания слабощелочной среды в растворе, при осаждении амфотерных гидроксидов.

В 1М растворе аммиака содержится в основном гидрат NH 3 Н 2 O и лишь 0,4 % ионов NH 4 + и ОН ‑ (за счет диссоциации гидрата); таким образом, ионный «гидроксид аммония NH 4 OH» практически не содержится в растворе, нет такого соединения и в твердом гидрате. Уравнения важнейших реакций:

NH 3 Н 2 O (конц.) = NH 3 + Н 2 O (кипячение с NaOH)

NH 3 Н 2 O + НCl (разб.) = NH 4 Cl + Н 2 O

3(NH 3 Н 2 O) (конц.) + CrCl 3 = Cr(OH) 3 ↓ + 3NH 4 Cl

8(NH 3 Н 2 O) (конц.) + ЗBr 2(р) = N 2 + 6NH 4 Br + 8Н 2 O (40–50 °C)

2(NH 3 Н 2 O) (конц.) + 2КMnO 4 = N 2 + 2MnO 2 ↓ + 4Н 2 O + 2КОН

4(NH 3 Н 2 O) (конц.) + Ag 2 O = 2OH + 3H 2 O

4(NH 3 Н 2 O) (конц.) + Cu(OH) 2 + (OH) 2 + 4Н 2 O

6(NH 3 Н 2 O) (конц.) + NiCl 2 = Cl 2 + 6Н 2 O

Разбавленный раствор аммиака (3–10 %‑ный) часто называют нашатырным спиртом (название придумано алхимиками), а концентрированный раствор (18,5–25 %‑ный) – аммиачной водой (выпускается промышленностью).


Похожая информация.


© 2024 educent.ru - Портал полезных знаний для школьников и их родителей