Разработка полупроводникового гетеролазера для использования в волс iii поколения. Полупроводниковые лазеры Расчет и проектирование полупроводникового лазера

Разработка полупроводникового гетеролазера для использования в волс iii поколения. Полупроводниковые лазеры Расчет и проектирование полупроводникового лазера

18.08.2023

Введение

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора оптического квантового генератора, или лазера.

Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча.

Квантовые генераторы представляют собой особый класс электронных приборов, вобравший в себя самые современные достижения различных областей науки и техники.

Газовыми называются лазеры, в которых активной средой являются газ, смесь нескольких газов или смесь газов с парами металла.

Газовые лазеры представляют собой наиболее широко используемый в настоящее время тип лазеров. Среди различных типов газовых лазеров всегда можно найти лазер, который будет удовлетворять почти любому требованию, предъявляемому к лазеру, за исключением очень большой мощности в видимой области спектра в импульсном режиме.

Большие мощности необходимы для многих экспериментов при изучении нелинейных оптических свойств материалов. В настоящее время большие мощности в газовых лазерах не получены по причине того, что плотность атомов в них недостаточно велика. Однако почти для всех других целей можно найти конкретный тип газового лазера, который будет превосходить как твердотельные лазеры с оптической накачкой, так и полупроводниковые лазеры.

Большую группу газовых лазеров составляют газоразрядные лазеры, в которых активной средой является разреженный газ (давление 1–10 мм рт. ст.), а накачка осуществляется электрическим разрядом, который может быть тлеющим или дуговым и создается постоянным током или переменным током высокой частоты (10–50 МГц).

Существует несколько типов газоразрядных лазеров. В ионных лазерах излучение получается за счет переходов электронов между энергетическими уровнями ионов. Примером служит аргоновый лазер, в котором используется дуговой разряд постоянного тока.

Лазеры на атомных переходах генерируют за счет переходов электронов между энергетическими уровнями атомов. Эти лазеры дают излучение с длиной волны 0,4–100 мкм. Пример – гелий-неоновый лазер, работающий на смеси гелия и неона под давлением около 1 мм рт. ст. Для накачки служит тлеющий разряд, создаваемый постоянным напряжением примерно 1000 В.

К газоразрядным относятся также молекулярные лазеры, в которых излучение возникает от переходов электронов между энергетическими уровнями молекул. Эти лазеры имеют широкий диапазон частот, соответствующий длинам волн от 0,2 до 50 мкм.

Наиболее распространен из молекулярных лазер на диоксиде углерода (СО 2 -лазер). Он может давать мощность до 10 кВт и имеет довольно высокий КПД – около 40%. К основному углекислому газу обычно ещё добавляют примеси азота, гелия и других газов. Для накачки применяют тлеющий разряд постоянного тока или высокочастотный. Лазер на диоксиде углерода создает излучение с длиной волны около 10 мкм.

Проектирование квантовых генераторов весьма трудоемко из-за большого разнообразия процессов, определяющих их эксплуатационные характеристики, но не смотря на это газовые лазеры на углекислом газе используются во многих сферах.

На основе CO 2 -лазеров разработаны и успешно эксплуатируются системы лазерного наведения, локационные системы контроля окружающей среды (лидары), технологические установки лазерной сварки, резки металлов и диэлектрических материалов, установки скрайбирования стеклянных поверхностей, поверхностной закалки стальных изделий. Также CO2-лазеры широко применяються в системах космической связи.

Основной задачей дисциплины «оптоэлектронные квантовые приборы и устройства» является изучение физических основ, устройства, принципов действия, характеристик и параметров важнейших приборов и устройств, используемых в оптических системах связи. К их числу относятся квантовые генераторы и усилители, оптические модуляторы, фотоприемные устройства,нелинейно- оптические элементы и устройства, голографические и интегрально-оптические компоненты. Из этого следует актуальность темы данного курсового проекта.

Целью данного курсового проекта является описание газовых лазеров и расчет гелий-неонового лазера.

В соответствии с целью решаются следующие задачи:

Изучение принципа работы квантового генератора;

Изучение устройства и принципа работы СО 2 -лазера;

Изучение документации по техники безопасности при работе с лазерами;

Расчет СО 2 -лазера.

1 Принцип работы квантового генератора

Принцип работы квантовых генераторов основан на усилении электромагнитных волн с помощью эффекта вынужденного (индуцированного) излучения. Усиление обеспечивается за счет выделения внутренней энергии при стимулируемых внешним излучением переходах атомов, молекул, ионов с некоторого возбужденного верхнего энергетического уровня на нижний (ниже расположенный). Эти вынужденные переходы вызываются фотонами. Энергию фотона можно вычислить по формуле:

hν = E 2 - E 1 ,

где E2 и E1 – энергии верхнего и нижнего уровней;

h = 6,626∙10-34 Дж∙с – постоянная Планка;

ν = c/λ – частота излучения, c – скорость света, λ – длина волны.

Возбуждение, или, как принято называть, накачка, осуществляется либо непосредственно от источника электрической энергии, либо за счет потока оптического излучения, химической реакции, ряда других энергетических источников.

В условиях термодинамического равновесия распределение частиц по энергиям однозначно определяется температурой тела и описывается законом Больцмана, согласно которому, чем выше уровень энергии, тем меньше концентрация частиц, пребывающих в данном состоянии, другими словами, меньше его населенность.

Под воздействием накачки, нарушающей термодинамическое равновесие, может возникнуть обратная ситуация, когда населенность верхнего уровня превысит населенность нижнего. Возникает состояние, которое называется инверсией населенностей. В этом случае количество вынужденных переходов с верхнего энергетического уровня на нижний, при которых возникает индуцированное излучение, превысит число обратных переходов, сопровождающихся поглощением исходного излучения. Поскольку направление распространения, фаза и поляризация индуцированного излучения совпадают с направлением, фазой и поляризацией воздействующего излучения, возникает эффект его усиления.

Среда, в которой возможно усиление излучения за счет индуцированных переходов, называется активной средой. Основным параметром, характеризующим её усилительные свойства, служит коэффициент, или показатель усиления kν - параметр, определяющий изменение потока излучения на частоте ν на единицу длины пространства взаимодействия.

Усилительные свойства активной среды можно существенно повысить, применяя известный в радиофизике принцип положительной обратной связи, когда часть усиленного сигнала возвращается обратно в активную среду и повторно усиливается. Если при этом усиление превышает все потери, включая те, которые используются как полезный сигнал (полезные потери), возникает режим автогенерации.

Автогенерция начинается с появления спонтанных переходов и развивается до некоторого стационарного уровня, определяемого балансом между усилением и потерями.

В квантовой электронике для создания положительной обратной связи на данной длине волны используют преимущественно открытые резонаторы – систему из двух зеркал, одно из которых (глухое) может быть совершенно непрозрачным, второе (выходное) делается полупрозрачным.

Область генерации лазеров соответствует оптическому диапазону электромагнитных волн, поэтому резонаторы лазеров называют еще оптическими резонаторами.

Типичная функциональная схема лазера с указанными выше элементами показана на рисунке 1.

Обязательным элементом конструкции газового лазера должна быть оболочка (газоразрядная трубка), в объеме которой находится газ определенного состава при заданном давлении. С торцевых сторон оболочка закрыта окнами из прозрачного для лазерного излучения материала. Эта функциональная часть прибора называется активным элементом. Окна для уменьшения потерь на отражение от их поверхности устанавливают под углом Брюстера. Лазерное излучение в таких приборах всегда поляризовано.

Активный элемент вместе с зеркалами резонатора, установленными снаружи активного элемента, называется излучателем. Возможен вариант, когда зеркала резонатора закрепляются непосредственно на торцах оболочки активного элемента, выполняя одновременно функцию окон по герметизации газового объема (лазер с внутренними зеркалами).

Зависимость коэффициента усиления активной среды от частоты (контур усиления) определяется формой спектральной линии рабочего квантового перехода. Лазерная генерация возникает только на таких частотах в пределах этого контура, при которых в пространстве между зеркалами укладывается целое число полуволн. В этом случае в результате интерференции прямых и обратных волн в резонаторе формируются так называемые стоячие волны с узлами энергии на зеркалах.

Структура электромагнитного поля стоячих волн в резонаторе может быть самой разнообразной. Её конкретные конфигурации принято называть модами. Колебания с различными частотами, но одинаковым распределением поля в поперечном направлении называются продольными (или аксиальными) модами. Их связывают с волнами, распространяющимися строго вдоль оси резонатора. Колебания, отличающиеся друг от друга распределением поля в поперечном направлении, соответственно - поперечными (или неаксиальными) модами. Их связывают с волнами, распространяющимися под различными небольшими углами к оси и имеющими соответственно поперечную составляющую волнового вектора. Для обозначения различных мод используется следующая аббревиатура: ТЕМmn. В этом обозначении m и n – индексы, показывающие периодичность изменения поля на зеркалах по различным координатам в поперечном направлении. Если при работе лазера генерируется только основная (наинизшая) мода, говорят об одномодовом режиме работы. При наличии нескольких поперечных мод режим называется многомодовым. При работе в одномодовом режиме возможна генерации на нескольких частотах с различным количеством продольных мод. Если генерация происходит только на одной продольной моде, говорят об одночастотном режиме.

Рисунок 1 – Схема газового лазера.

На рисунке приняты следующие обозначения:

  1. Зеркала оптического резонатора;
  2. Окна оптического резонатора;
  3. Электроды;
  4. Газоразрядная трубка.

2 Устройство и принцип работы СО 2 -лазера

Схематически устройство СО 2 -лазера представлен на рисунке 2.


Рисунок 2 – Принцип устройства СО2-лазера.

Одной из самой распространенной разновидностью СО 2 -лазеров являются газодинамические лазеры. В них инверсная населенность, необходимая для лазерного излучения, достигается за счет того, что газ, предварительно нагретый до 1500 К при давлении 20–30 атм. , поступает в рабочую камеру, где он расширяется, а его температура и давление резко снижаются. Такие лазеры могут дать непрерывное излучение мощностью до 100 кВт.

Для создания активной среды (как говорят, «накачки») СО 2 -лазеров чаще всего используют тлеющий разряд постоянного тока. В последнее время все шире применяют высокочастотный разряд. Но это особая тема. Высокочастотный разряд и те важнейшие применения, которые он нашел в наше время (не только в лазерной технике), – это тема отдельной статьи. Об общих принципах работы электроразрядных СО 2 -лазеров, проблемах, которые при этом возникают, и некоторых конструкциях, основанных на применении разряда постоянного тока.

В самом начале 70-х годов в ходе разработки мощных СО 2 -лазеров выяснилось, что разряду свойственны неизведанные доселе черты и губительные для лазеров неустойчивости. Они ставят почти непреодолимые препятствия попыткам заполнить плазмой большой объем при повышенном давлении, что как раз и требуется для получения больших лазерных мощностей. Пожалуй, ни одна из проблем прикладного характера не послужила в последние десятилетия прогрессу науки об электрическом разряде в газах так, как задача создания мощных СО 2 -лазеров непрерывного действия.

Рассмотрим Принцип работы СО 2 лазера.

Активной средой почти любого лазера служит вещество, в определенных молекулах или атомах которого в определенной паре уровней можно создать инверсную заселенность. Это означает, что количество молекул, находящихся в верхнем квантовом состоянии, соответствующем радиационному лазерному переходу, превышает количество молекул, находящихся в нижнем. В отличие от обычной ситуации луч света, проходя через подобную среду, не поглощается, а усиливается, что открывает возможность генерации излучения.

МИНОБРНАУКИ РОССИИ

Автономное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Санкт-Петербургский государственный электротехнический университет

«ЛЭТИ» им. В.И. Ульянова (Ленина)»

(СПбГЭТУ)

ФАКУЛЬТЕТ ЭЛЕКТРОНИКИ

КАФЕДРА МИКРО- И НАНОЭЛЕКТРОНИКИ

ПОЛУПРВОДНИКОВЫЕ ОПТОЭЛЕКТРОННЫЕ ПРИБОРЫ

Курсовая работа

Разработка полупроводникового гетеролазера для использования в ВОЛС III поколения.

Выполнил

студент гр. № 0282 Проверил: Тарасов С.А.

Степанов Е. М.

САНКТ-ПЕТЕРБУРГ

2015 г.

Введение 3

III поколения 4

2 Расчетная часть 8

2.1 Выбор структуры и расчет ее параметров 8

2.2 Расчет РОС резонатора 11

2.3 Расчет внутреннего квантового выхода 11

2.4 Расчет оптического ограничения 12

2.5 Расчет порогового тока 12

2.6 Расчет ватт-амперных характеристик 13

2.7 Расчет параметров резонатора 14

2.8 Выбор остальных слоев 14

3 Структура кристалла 16

Заключение 19

Список использованных источников 21

Введение

В качестве источников излучения для волоконно-оптических линий связи целесообразно использовать лазерные диоды на основе твердых растворов полупроводников. В настоящей работе представлен вариант расчета полупроводниковой лазерной структуры на основе соединений третей и пятой групп для волоконно-оптических линий связи III поколения.

1 Волоконно-оптические линии связи III поколения.

Волоконно-оптическая линия связи (ВОЛС) это система, позволяющая передавать информацию. Носителем информации в такой системе выступает фотон. Он движется со скоростью света, что является предпосылкой к увеличению скорости передачи информации. Базовыми компонентами такой системы являются передатчик, оптическое волокно, приемник, ретранслятор (Р), усилитель (У) (рис. 1).

Рисунок 1 – Структурная схема волоконно-оптической линии связи.

Также необходимыми элементами являются кодирующее устройство (КУ) и декодирующее устройство (ДКУ). Передатчик, в общем случае, состоит из источника излучения (ИИ) и модулятора (М). По сравнению с другими способами передачи информации оптоволокно выгодно отличается в первую очередь низкими потерями, что позволяет передавать информацию на большие расстояния. Вторым по значимости параметром является большая пропускная способность. То есть при прочих равных по одному оптоволоконному кабелю можно передать столько же информации, чем например по десяти электрическим. Еще одним важным моментом является возможность объединения нескольких оптоволоконных линий в один кабель и на помехозащищенности это сказываться не будет, что для электрических линий проблематично.

Передатчики предназначены для того, чтобы исходный сигнал, как правило, заданный в электрическом виде, преобразовать в электромагнитную волну оптического диапазона. В качестве передатчиков могут использоваться диоды, лазерные диоды и лазеры. К первому поколению передатчиков относится светоизлучающий диод, который работает на длине волны 0,85 мкм. Второе поколение передатчиков работает на длине волны 1,3 мкм. Третье поколение передатчиков было реализовано на лазерных диодах с длинной волны 1,55 мкм в 1982 году. Использование лазеров в качестве передатчиков дает некоторые преимущества. В частности из-за того, что эмиссия является стимулированной, повышается выходная мощность. Также излучение лазера направленно, что повышает эффективность взаимодействия в оптических волокнах. А узкая ширина спектральной линии уменьшает цветовую дисперсию и увеличивает скорость передачи. Если создать лазер стабильно работающий в режиме одной продольной моды в течении каждого импульса, то можно повысить значение информационной пропускной способности. Для достижения этого можно использовать лазерные структуры с распределенной обратной связью.

Следующим элементов ВОЛС является оптоволокно. Прохождение света по оптоволокну обеспечивается эффектом полного внутреннего отражения. И соответственно оно состоит из центральной части – сердцевины и оболочке выполненной из материала с меньшей оптической плотностью. По количеству типов волн, которые могут распространяться по оптоволокну, их делят на многомодовые и одномодовые. Одномодовые волокна обладают лучшими характеристиками по затуханию и по полосе пропусканию. Но их недостатки связанны с тем, что диаметр одномодовых линий составляет величины порядка единиц микрометров. Это затрудняет введение излучения и сращивание. Диаметр многомодовой жилки составляет десятки микрометров, но полоса пропускания у них несколько меньше и для распространения на большие расстояния они не подходят.

По мере распространения света по оптоволокну он затухает. Такие устройства как ретрансляторы (рис.2 а) преобразуют оптический сигнал в электрический и при помощи передатчика отправляют его по линии дальше с уже большей интенсивностью.

Рисунок 2 – Схематическое изображение устройств а) ретранслятора и б) усилителя.

Усилители делают тоже с той разницей, что они усиливают непосредственно сам оптический сигнал. В отличие от повторителей не корректируют сигнал, а только усиливают и сигнал и шум. После того как свет прошел по оптоволокну он преобразуется обратно в электрический сигнал. Это осуществляет приемник. Обычно это фотодиод на основе полупроводника.

К положительным сторонам ВОЛС относится малое затухание сигнала, широкая полоса пропускания, высокая помехозащищенность. Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих медных кабельных систем и электрического оборудования, способного индуцировать электромагнитное излучение. В многоволоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей многопарным медным кабелям. Среди недостатков нужно отметить хрупкость оптического волокна, сложность монтажа. В некоторых случаях требуется микронная точность. Оптическое волокно имеет спектр поглощения, представленный на рисунке 3.

Рисунок 3 – Спектр поглощения оптоволокна.

В ВОЛС III поколения реализована передача информации на длине волны 1.55 мкм. Как видно из спектра поглощение на этой длине волны самое маленькое оно составляет величину порядка 0.2 децибелов/км.

2 Расчетная часть.

2.1 Выбор структуры и расчет ее параметров.

Выбор твердого раствора. В качестве твердого раствора выбрано четверное соединение Ga x In 1- x P y As 1- y . Ширина запрещенной зоны рассчитывается следующим образом:

(2.1)

Изопериодной подложкой для этого твердого раствора является подложка InP . Для твердого раствора типа A x B 1- x C y D 1- y исходными компонентами будут бинарные соединения: 1 – AC ; 2 – BC ; 3 – AD ; 4 – BD . Расчет энергетических зазоров осуществляется по приведенной ниже формуле.

E (x , y ) = E 4 + (E 3 - E 4 ) x + (E 2 - E 4 ) y + (E 1 + E 4 - E 2 - E 3 ) xy –

– y(1-y) – x(1-x) , (2.2)

где E n – энергетический зазор в заданной точке зоны Бриллюэна бинарного соединения; c mn – коэффициенты нелинейности для трехкомпонентного твердого раствора, образованного бинарными соединениями m и n .

В таблице 1 и 2 приведены значения энергетических зазоров для бинарных соединений, четверных и необходимые коэффициенты для учета температуры. Температура в данном случае была выбрана T = 80 ° C = 353 K .

Таблица 1 – Энергетические зазоры бинарных соединений.

E с учетом Т

2,78

2,35

2,72

0,65

0,577

0,577

2,6803

2,2507

2,6207

1,4236

2,384

2,014

0,363

0,37

0,363

1,3357

2,2533

1,9261

GaAs

1,519

1,981

1,815

0,541

0,46

0,605

1,3979

1,878

1,6795

InAs

0,417

1,433

1,133

0,276

0,276

0,276

0,338

1,3558

1,0558

Таблица 2 – Энергетические зазоры четверных соединений.

GaInPAs

АО

0,7999

1,379

1,3297

ООО

0,9217

ОЭ

1,0916

Подбор необходимых значений состава проводился по соотношению x и y приведенному ниже. Полученные значения состава для всех областей: активной, волноводной и области эмиттера сведены в таблицу 5.

Необходимым условием при расчете состава области оптического ограничения и области эмиттера было то, что разница в разрыве зон должна быть отлична не менее чем на 4 kT .

Период решетки четверного соединения рассчитывается по следующей формуле:

a (x,y) = xya 1 + (1-x)ya 2 + x(1-y)a 3 + (1-x)(1-y)a 4 , (2.4)

где a 1 – a 4 – периоды решеток соответствующих бинарных соединений. Они представлены в таблице 3.

Таблица 3 – Периоды решеток бинарных соединений.

a, A

5,4509

5,8688

GaAs

5,6532

InAs

6,0584

Для четверных соединений GaInPAs для всех областей значения периодов решеток сведены в таблицу 5.

Расчет показателя преломления производился по соотношению приведенному ниже.

(2.5)

где необходимые параметры представлены в таблице 4.

Таблица 4 – Параметры бинарных и четверных соединений для расчета показателя преломления.

2,7455

3,6655

5,2655

0,42

31,4388

160,537

1,3257

2,7807

5,0807

0,604

26,0399

128,707

GaAs

1,4062

2,8712

4,9712

0,584

30,0432

151,197

InAs

0,3453

2,4853

4,6853

1,166

14,6475

167,261

GaInPAs

АО

0,8096

2,574

4,7127

0,8682

21,8783

157,1932

ООО

0,9302

2,6158

4,7649

0,8175

22,4393

151,9349

ОЭ

1,0943

2,6796

4,8765

0,7344

23,7145

142,9967

Показатель преломления для волноводной области выбирался таким образом, чтобы отличаться от показателя преломления области эмиттера как минимум на один процент.

Таблица 5 – Основные параметры рабочих областей.

АО

ООО

ОЭ

0,7999

0,9218

1,0917

0,371

0,2626

0,1403

0,1976

0,4276

0,6914

a(x,y)

5,8697

a(x,y)

5,8695

a(x,y)

5,8692

Δa, %

0,0145

Δa, %

0,0027

Δa, %

0,0046

3,6862

3,6393

3,5936

Δn, %

1,2898

Δn, %

1,2721

0,1217

0,1218

0,1699

2.2 Расчет РОС резонатора.

Основой РОС резонатора является дифракционная решетка со следующим периодом.

Получившееся таким образом значение периода решетки составляет 214 нм. Толщина слоя между активной областью и областью эмиттера выбрана порядка толщины длины волны, то есть 1550 нм.

2.3 Расчет внутреннего квантового выхода. Значение квантового выхода определяется вероятностью излучательных и безызлучательных переходов.

Значение внутреннего квантового выхода η i = 0.9999.

Излучательное время жизни будет определяться как

(

где R = 10 -10 см 3 /с – коэффициент рекомбинации, p o = 10 15 см -3 – концентрация равновесных носителей заряда, Δ n = 1.366*10 25 см -3 и было рассчитано из

где n N = 10 18 см -3 – концентрация равновесных носителей заряда в эмиттере, Δ E c = 0.5 эВ – разница между шириной запрещенной зоны АО и ОЭ.

Излучательное время жизни τ и = 7.3203*10 -16 с. Безизлучательное время жизни τ и = 1*10 -7 с. Безизлучательное время жизни будет определяться как

где C = 10 -14 с*м -3 – константа, N л = 10 21 м -3 – концентрация ловушек.

2.4 Расчет оптического ограничения.

Приведенная толщина активного слоя D = 10.4817:

Коэффициент оптического ограничения Г = 0.9821:

Для нашего случая необходим также расчет дополнительного коэффициента связанного с толщиной активной области г = 0.0394:

где d п = 1268.8997 нм – размер пятна в ближней зоне, определяемый как

2.5 Расчет порогового тока.

Коэффициент отражения зеркал R = 0.3236:

Пороговая плотность тока может быть рассчитана по следующей формуле:

где β = 7*10 -7 нм -1 – коэффициент распределенных потерь на рассеяние и поглощение энергии излучения.

Пороговая плотность тока j пор = 190.6014 А/см 2 .

Пороговый ток I = j пор WL = 38.1202 мА.

2.6 Расчет ватт-амперных характеристик и КПД.

Мощность до порога P до = 30.5242 мВт.

Мощность после порога P псл = 244.3889 мВт.

На рис. 4 представлен график зависимости выходной мощности от тока.

Рисунок 4 – Зависимость выходной мощности от тока.

Расчет КПД η = 0.8014

КПД =

Дифференциальный КПД η д = 0.7792

2.7 Расчет параметров резонатора.

Разность частот Δν q = 2.0594*10 11 Гц.

Δν q = ν q – ν q -1 =

Число аксиальных мод N акс = 71

N акс =

Неаксиальные колебания Δν m = 1.236*10 12 Гц.

Δν m =

Добротность резонатора Q = 5758.0722

Ширина резонансной линии Δν p = 3.359*10 10 Гц.

Δν p =

Расходимость лазерного луча = 0.0684 °.

где Δλ – спектральная ширина линии излучения, m – порядок дифракции (в нашем случае первый), b – период решетки.

2.8 Выбор остальных слоев.

Для обеспечения хорошего омического контакта в структуре предусмотрен высоколегированный слой (N = 10 19 см -3 ) толщиной 5 мкм. Верхний контакт сделан прозрачным, поскольку вывод излучения осуществляется через него перпендикулярно подложке. Для улучшения структур, выращиваемых на подложке, предпочтительно использование буферного слоя. В нашем случае буферный слой выбран толщиной 5 мкм. Размеры самого кристалла выбраны следующие: толщина 100 мкм, ширина 100 мкм, длина 200 мкм. Подробное изображение структуры со всеми слоями представлено на рисунке 5. Параметры всех слоев такие энергетические зазоры, показатели преломления и уровни легирования представлены на 6,7,8 рисунках соответственно.

Рисунок 6 – Энергетическая диаграмма структуры.

Рисунок 7 – Показатели преломления всех слоев структуры.

Рисунок 8 – Уровни легирования слоев структуры.

Рисунок 9 – Выбранные составы твердых растворов.

Заключение

Разработанный полупроводниковый лазер обладает характеристиками превосходящими изначально заданные. Так пороговый ток у разработанной структуры лазера составил 38.1202 мА, что ниже, чем заданные 40 мА. Выходная мощность также превзошла достаточную – 30.5242 мВТ против 5.

Рассчитанный состав активной области на основе твердого раствора GaInPAs является изопериодным к подложке InP , расхождение периода решеток составило 0.0145 %. В свою очередь периоды решеток следующих слоев имеют расхождение также не превышающее 0.01 % (табл. 5). Это дает предпосылку к технологической реализуемости полученной структуры, а также способствует уменьшению дефектности структуры, не допуская появлению больших не скомпенсированных сил растяжения или сжатия на гетерогранице. Для обеспечения локализации электромагнитной волны в области оптического ограничения необходима разница в показателях преломления ООО и ОЭ не менее одного процента в нашем случае эта величина составила 1.2721 %, что является удовлетворительным результатом, однако дальнейшее улучшение этого параметра невозможно из-за того, что невозможен дальнейший сдвиг по изопериоду. Также необходимым условием работы лазерной структуры является обеспечение локализации электронов в активной области, с тем чтобы было возможно их возбуждение с последующей стимулированной эмиссией, это будет выполняться при условии, что разрыв зон ООО и АО будет больше 4 kT (выполнено – табл. 5).

Коэффициент оптического ограничения полученной структуры составил 0.9821, это значение близко к единице, однако для его дальнейшего увеличения необходимо увеличивать толщину области оптического ограничения. Причем, увеличение толщины ООО в несколько раз дает незначительное увеличение коэффициента оптического ограничения, поэтому в качестве оптимальной толщины ООО выбрана величина близкая к длине волны излучения, то есть 1550 нм.

Высокое значение внутреннего квантового выхода (99.9999 %) обусловлено небольшим количеством безызлучательных переходов, которое в свою очередь является следствием низкой дефектности структуры. Дифференциальный КПД является обобщенной характеристикой эффективности структуры и учитывает такие процессы как рассеяние и поглощение энергии излучения. В нашем случае он составил 77.92 %.

Полученное значение добротности составило 5758.0722, что свидетельствует о невысоком уровне потерь в резонаторе. Поскольку естественный резонатор образованный сколами по кристаллографическим плоскостям кристалла имеет коэффициент отражения зеркал 32.36 %, он будет обладать огромными потерями. В качестве основы резонатора можно использовать распределенную обратную связь в основе которой лежит эффект брэгговского отражения световых волн на периодической решетки, созданной на границе ООО. Расчитанный период решетки составил 214.305 нм, что при ширине кристалла 100 мкм позволяет создать порядка 470 периодов. Чем больше будет число периодов, тем эффективней будет происходить отражение. Еще одним преимуществом РОС резонатора является то, что он обладает высокой селективностью по длине волны. Это позволяет выводить излучение определенной частоты, позволяя преодолеть один из основным недостатков полупроводниковых лазеров – зависимость длины волны излучения от температуры. Также использование РОС обеспечивает возможность вывода излучения под заданным углом. Возможно это стало предпосылкой очень маленького угла расходимости он составил 0.0684 °. Излучение в данном случае выводится перпендикулярно подложке, что является самым оптимальным вариантом, поскольку также способствует наименьшему углу расходимости.

Список исходных источников

1. Пихтин А.Н. Оптическая и квантовая электроника: Учеб. Для вузов [Текст] /А.Н. Пихтин. – М.: Высш. шк., 2001. – 573 с.

2. Тарасов С.А., Пихти А.Н. Полупроводниковые оптоэлектронные приборы. Учебное пособие . СПб . : Изд - во СПбГЭТУ “ ЛЭТИ ”. 2008. 96 с .

3. Физико-технический институт имени А.Ф. Иоффе Российской академии наук [Электронный ресурс] – Режим доступа: http :// www . ioffe . ru / SVA / NSM / Semicond /

PAGE \* MERGEFORMAT 1


Федеральное государственное бюджетное
образовательное учреждение


Курсовое проектирование
на тему:
«Полупроводниковый лазер»

Выполнил:
студент гр. РЭБ-310
Васильев В.Ф.

Проверил:
доцент, к.т.н. Шкаев А.Г.

Омск 2012
Федеральное государственное бюджетное
образовательное учреждение
высшего профессионального образования
«Омский государственный технический университет»
Кафедра «Технология электронной аппаратуры»
Специальность 210100.62 – «Промышленная электроника»

Задание
На курсовое проектирование по дисциплине
«Твердотельная электроника»
Студент группы РЭБ-310 Васильев Василий Федотович

Тема проекта: «Полупроводниковый лазер»
Срок сдачи законченного проекта - 15 неделя 2012 г.

Содержание курсового проекта:

    Пояснительная записка.
    Графическая часть.
Содержание расчетно- пояснительной записки:
Техническое задание.
Аннотация.
Содержание.
Введение.
    Классификация
    Принцип действия
    Зонные диаграммы в равновесном состоянии и при внешнем смещении.
    Аналитическое и графическое представление вольтамперной характеристики светодиодов.
    Выбор и описание работы типовой схемы включения
    Расчёт элементов выбранной схемы.
Заключение.
Библиографический список.
Приложение.

Дата выдачи задания 10 сентября 2012 г.
Руководитель проекта _________________Шкаев А.Г.

Задание принято к исполнению 10 сентября 2012 г.
Студент группы РЭБ-310 _________________ Васильев В.Ф.

Аннотация

В данной курсовой работе рассмотрены принцип работы, устройство и область применения полупроводниковых лазеров.
Полупроводниковый лазер - твердотельный лазер, в котором в качестве рабочего вещества используется полупроводник.
Курсовая работа выполнена на листах формата А4, в количестве 17 стр. Содержит 6 рисунков и 1 таблицу.

Введение
1. Классификация
2. Принцип действия
3. Зонные диаграммы в равновесном состоянии и при внешнем смещении
4. Аналитическое и графическое представление вольтамперной характеристики
5. Выбор и описание работы типовой схемы включения
6. Расчёт элементов выбранной схемы
7. Заключение
8. Библиографический список
9. Приложение

Введение
В данной курсовой работе будет рассмотрен принцип работы, устройство и область применения полупроводниковых лазеров.
Термин «лазер» появился сравнительно недавно, а кажется, что существует он давным-давно, так широко он вошел в обиход. Появление лазеров одно из самых замечательных и впечатляющих достижений квантовой электроники, принципиально нового направления в науке, возникшего в середине 50-х годов.
Лазер (англ. laser, акроним от англ. light amplification by stimulated emission of radiation - усиление света посредством вынужденного излучения), оптический квантовый генератор - устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения
Впервые генераторы электромагнитного излучения, использующие механизм вынужденного перехода, были созданы в 1954 г. советскими физиками А.М. Прохоровым и Н.Г. Басовым и американским физиком Ч.Таунсом на частоте 24 ГГц. Активной средой служил аммиак.
Первый квантовый генератор оптического диапазона был создан Т.Мейманом (США) в 1960 г. Начальные буквы основных компонентов английской фразы “ LightAmplificationbystimulated emissionofradiation” (Усиление света с помощью индуцированного излучения) и образовали название нового прибора – лазер. В качестве источника излучения в нём использовался кристалл искусственного рубина, генератор работал в импульсном режиме. Год спустя появился первый газовый лазер с непрерывным излучением (Джаван, Беннет, Эриот - США). А ещё через год одновременно в СССР и США был создан полупроводниковый лазер.
Главная причина стремительного роста внимания к лазерам кроется, прежде всего, в исключительных свойствах этих приборов.
Уникальные свойства лазера:
монохроматичность (строгая одноцветность),
высокая когерентность (согласованность колебаний),
острая направленность светового излучения.
Существует несколько видов лазеров:
полупроводниковые
твердотельные
газовые
рубиновые

    Классификация
Лазеры на двойной гетероструктуре
В этих устройствах, слой материала с более узкой запрещённой зоной располагается между двумя слоями материала с более широкой запрещённой зоной. Чаще всего для реализации лазера на основе двойной гетероструктуры используют арсенид галлия (GaAs) и арсенид алюминия-галлия (AlGaAs). Каждое соединение двух таких различных полупроводников называется гетероструктурой, а устройство - «диод с двойной гетероструктурой» (ДГС). В англоязычной литературе используются названия «double heterostructure laser» или «DH laser». Описанная в начале статьи конструкция называется «диод на гомопереходе» как раз для иллюстрации отличий от данного типа, который сегодня используется достаточно широко.
Преимущество лазеров с двойной гетероструктурой состоит в том, что область сосуществования электронов и дырок («активная область») заключена в тонком среднем слое. Это означает, что много больше электронно-дырочных пар будут давать вклад в усиление - не так много их останется на периферии в области с низким усилением. Дополнительно, свет будет отражаться от самих гетеропереходов, то есть излучение будет целиком заключено в области максимально эффективного усиления.

Диод с квантовыми ямами
Если средний слой диода ДГС сделать ещё тоньше, такой слой начнёт работать как квантовая яма. Это означает, что в вертикальном направлении энергия электронов начнёт квантоваться. Разница между энергетическими уровнями квантовых ям может использоваться для генерации излучения вместо потенциального барьера. Такой подход очень эффективен с точки зрения управления длиной волны излучения, которая будет зависеть от толщины среднего слоя. Эффективность такого лазера будет выше по сравнению с однослойным лазером благодаря тому, что зависимость плотности электронов и дырок, участвующих в процессе излучения, имеет более равномерное распределение.

Гетероструктурные лазеры с раздельным удержанием
Основная проблема гетероструктурных лазеров с тонким слоем - невозможность эффективного удержания света. Чтобы преодолеть её, с двух сторон кристалла добавляют ещё два слоя. Эти слои имеют меньший коэффициент преломления по сравнению с центральными слоями. Такая структура, напоминающая световод, более эффективно удерживает свет. Эти устройства называются гетероструктурами с раздельным удержанием («separate confinement heterostructure», SCH)
Большинство полупроводниковых лазеров, произведённых с 1990-го года, изготовлены по этой технологии.

Лазеры с распределённой обратной связью
Лазеры с распределённой обратной связью (РОС) чаще всего используются в системах многочастотной волоконно-оптической связи. Чтобы стабилизировать длину волны, в районе p-n перехода создаётся поперечная насечка, образующая дифракционную решётку. Благодаря этой насечке, излучение только с одной длиной волны возвращается обратно в резонатор и участвует в дальнейшем усилении. РОС-лазеры имеют стабильную длину волны излучения, которая определяется на этапе производства шагом насечки, но может незначительно меняться под влиянием температуры. Такие лазеры - основа современных оптических телекоммуникационных систем.

VCSEL
VCSEL - «Поверхностно-излучающий лазер с вертикальным резонатором» - полупроводниковый лазер, излучающий свет в направлении, перпендикулярном поверхности кристалла, в отличие от обычных лазерных диодов, излучающих в плоскости, параллельной поверхности.

VECSEL
VECSEL - «Поверхностно-излучающий лазер с вертикальным внешним резонатором». Аналогичен по своему устройству VCSEL, но имеющий внешний резонатор. Может исполняться как с токовой, так и с оптической накачкой.

    Принцип действия
Когда на анод обычного диода подаётся положительный потенциал, то говорят, что диод смещён в прямом направлении. При этом дырки из p-области инжектируются в n-область p-n перехода, а электроны из n-области инжектируются в p-область полупроводника. Если электрон и дырка оказываются «вблизи» (на расстоянии, когда возможно туннелирование), то они могут рекомбинировать с выделением энергии в виде фотона определённой длины волны (в силу сохранения энергии) и фонона (в силу сохранения импульса, потому что фотон уносит импульс). Такой процесс называется спонтанным излучением и является основным источником излучения в светодиодах.
Однако, при определённых условиях, электрон и дырка перед рекомбинацией могут находиться в одной области пространства достаточно долгое время (до микросекунд). Если в этот момент через эту область пространства пройдёт фотон нужной (резонансной) частоты, он может вызвать вынужденную рекомбинацию с выделением второго фотона, причём его направление, вектор поляризации и фаза будут в точности совпадать с теми же характеристиками первого фотона.
В лазерном диоде полупроводниковый кристалл изготавливают в виде очень тонкой прямоугольной пластинки. Такая пластинка по сути является оптическим волноводом, где излучение ограничено в относительно небольшом пространстве. Верхний слой кристалла легируется для создания n-области, а в нижнем слое создают p-область. В результате получается плоский p-n переход большой площади. Две боковые стороны (торцы) кристалла полируются для образования гладких параллельных плоскостей, которые образуют оптический резонатор, называемый резонатором Фабри-Перо. Случайный фотон спонтанного излучения, испущенный перпендикулярно этим плоскостям, пройдёт через весь оптический волновод и несколько раз отразится от торцов, прежде чем выйдет наружу. Проходя вдоль резонатора, он будет вызывать вынужденную рекомбинацию, создавая новые и новые фотоны с теми же параметрами, и излучение будет усиливаться (механизм вынужденного излучения). Как только усиление превысит потери, начнётся лазерная генерация.
Лазерные диоды могут быть нескольких типов. У основной их части слои сделаны очень тонкими, и такая структура может генерировать излучение только в направлении, параллельном этим слоям. С другой стороны, если волновод сделать достаточно широким по сравнению с длиной волны, он сможет работать уже в нескольких поперечных режимах. Такой диод называется многомодовым (англ. «multi-mode»). Применение таких лазеров возможно в тех случаях, когда от устройства требуется высокая мощность излучения, и не ставится условие хорошей сходимости луча (то есть допускается его значительное рассеивание). Такими областями применений являются: печатающие устройства, химическая промышленность, накачка других лазеров. С другой стороны, если требуется хорошая фокусировка луча, ширина волновода должна изготавливаться сравнимой с длиной волны излучения. Здесь уже ширина луча будет определяться только пределами, накладываемыми дифракцией. Такие устройства применяются в оптических запоминающих устройствах, лазерных целеуказателях, а также в волоконной технике. Следует, однако, заметить, что такие лазеры не могут поддерживать несколько продольных режимов, то есть не могут излучать на разных длинах волн одновременно.
Длина волны излучения лазерного диода зависит от ширины запрещённой зоны между энергетическими уровнями p- и n-областей полупроводника.
В связи с тем, что излучающий элемент достаточно тонок, луч на выходе диода, благодаря дифракции, практически сразу расходится. Для компенсации этого эффекта и получения тонкого луча необходимо применять собирающие линзы. Для многомодовых широких лазеров наиболее часто применяются цилиндрические линзы. Для одномодовых лазеров, при использовании симметричных линз, сечение луча будет эллиптическим, так как расхождение в вертикальной плоскости превышает расхождение в горизонтальной. Нагляднее всего это видно на примере луча лазерной указки.
В простейшем устройстве, которое было описано выше, невозможно выделить отдельную длину волны, исключая значение, характерное для оптического резонатора. Однако в устройствах с несколькими продольными режимами и материалом, способным усиливать излучение в достаточно широком диапазоне частот, возможна работа на нескольких длинах волн. Во многих случаях, включая большинство лазеров с видимым излучением, они работают на единственной длине волны, которая, однако обладает сильной нестабильностью и зависит от множества факторов - изменения силы тока, внешней температуры и т. д. В последние годы описанная выше конструкция простейшего лазерного диода подвергалась многочисленным усовершенствованиям, чтобы устройства на их основе могли отвечать современным требованиям.
    Зонные диаграммы в равновесном состоянии и при внешнем смеще нии
Когда прямое смещение на p-n переходе достаточно велико, чтобы позволить электро-
нам распространяться по зоне проводимости (или дыркам по валентной зоне), имеет место инжекционный характер протекания тока (см. рис 1).

Рис. 1: Зонная диаграмма p-n перехода: а) без смещения, б) при положительном смещении.
С целью уменьшения пороговой плотности тока были реализованы лазеры на гетероструктурах (с одним гетеропереходом – n-GaAs–pGe, p-GaAs–nAlxGa1-xAs; c двумя гетеропереходами – n-AlxGa1-xAs – p-GaAs – p+-AlxGa1-xAs. Использование гетероперехода позволяет реализовать одностороннюю инжекцию при слаболегированном эмиттере лазерного диода и существенно уменьшить пороговый ток. Схематично одна из типичных конструкций такого лазера с двойным гетеропереходом изображена на рисунке 1. В структуре с двумя гетеропереходами носители сосредоточены внутри активной области d, ограниченной с обеих сторон потенциальными барьерами; излучение также ограничено этой областью вследствие скачкообразного уменьшения показателя преломления за ее пределы. Эти ограничения способствуют усилению стимулированного излучения и соответственно уменьшению пороговой плотности тока. В области гетероперехода возникает волноводный эффект, и излучение лазера происходит в плоскости, параллельной гетеропереходу.

Рис.1
Зонная диаграмма (а, б, в) и структура (г) полупроводникового лазера на двойном гетеропереходе
а) чередование слоев в лазерной двойной n–p–p+ гетероструктуре;
б) зонная диаграмма двойной гетероструктуры при нулевом напряжении;
в) зонная диаграмма лазерной двойной гетероструктуры в активном режиме генерации лазерного излучения;
г) приборная реализация лазерного диода Al0,3Ga0,7As (p) – GaAs (p) и GaAs (n) – Al0,3Ga0,7As (n), активная область – слой из GaAs (n)
Активная область представляет собой слой n-GaAs толщиной всего 0,1–0,3 мкм. В такой структуре удалось снизить пороговую плотность тока почти на два порядка (~ 103 А/см2) по сравнению с устройством на гомопереходе. В результате чего лазер получил возможность работать в непрерывном режиме при комнатной температуре. Уменьшение пороговой плотности тока происходит из-за того, что опт
и т.д.................

Полупроводниковые инжекционные лазеры, так же, как и другой тип твердотельных излучателей – светодиоды, являются важнейшим элементом любой оптоэлектронной системы. В основе работы того и другого приборов лежит явление электролюминесценции. Применительно к вышеуказанным полупроводниковым излучателям, механизм электролюминесценции реализуется путем излучательной рекомбинации неравновесных носителей заряда, инжектированных через p-n переход.

Первые светодиоды появились на рубеже 50-х и 60-х годов ХХ века, а уже в 1961 г. Н.Г. Басов, О.Н. Крохин и Ю.М. Попов предложили использовать инжекцию в вырожденных p-n переходах для получения лазерного эффекта. В 1962 г. американским физикам Р. Холлу и сотр. удалось зарегистрировать сужение спектральной линии излучения полупроводникового светодиода, что было интерпретировано как проявление лазерного эффекта («сверхизлучение»). В 1970 г. российскими физиками – Ж.И. Алферовым с сотр. были изготовлены первые лазеры на гетероструктурах. Это позволило сделать приборы пригодными для массового серийного выпуска, что было в 2000 г. отмечено Нобелевской премией по физике. В настоящее время полупроводниковые лазеры получили самое широкое распространение в основном в устройствах для записи и считывания информации с компьютерных, аудио- и видео- компакт-дисков. Основными достоинствами полупроводниковых лазеров являются:

1. Экономичность, обеспечиваемая высокой эффективностью преобразования энергии накачки в энергию когерентного излучения;

2. Малая инерционность, обусловленная короткими характеристическими временами установления режима генерации (~ 10 -10 c);

3. Компактность, связанная со свойством полупроводников обеспечивать огромное оптическое усиление;

4. Простое устройство, низковольтное питание, совместимость с интегральными микросхемами («микрочипами»);

5. Возможность плавной перестройки длины волны в широком диапазоне вследствие зависимости оптических свойств полупроводников от температуры, давления и т.д.

Главной особенностью полупроводниковых лазеров является использование в них оптических переходов с участием уровней энергии (энергетических состояний) основных электронных энергетических зон кристалла. В этом отличие полупроводниковых лазеров от, например, рубиновых лазеров, где используются оптические переходы между примесными уровнями иона хрома Cr 3+ в Al 2 O 3 . Для применения в полупроводниковых лазерах наиболее подходящими оказались полупроводниковые соединения A III B V (см. Введение). Именно на основе этих соединений и их твердых растворов изготавливается промышленностью бóльшая часть полупроводниковых лазеров. Во многих полупроводниковых материалах этого класса рекомбинация избыточных носителей тока осуществляется путем прямых оптических переходов между заполненными состояниями вблизи дна зоны проводимости и свободными состояниями вблизи вершины валентной зоны (рис.1). Большая вероятность оптических переходов в прямозонных полупроводниках и большая плотность состояний в зонах позволяют получить высокое оптическое усиление в полупроводнике.

Рис.1. Испускание фотона при излучательной рекомбинации в прямозонном полупроводнике с инверсной заселенностью.

Рассмотрим основные принципы работы полупроводникового лазера. Если полупроводниковый кристалл, находится в состоянии термодинамического равновесия с окружающей средой, то он способен только поглощать падающее на него излучение. Интенсивность света, прошедшего в кристалле расстояние х , задается известным соотношением Бугера-Ламберта

Здесь R - коэффициент отражения света;

α - коэффициент поглощения света.

Для того, чтобы свет усиливался, проходя через кристалл, а не ослаблялся, требуется, чтобы коэффициент α был меньше нуля, что в термодинамически-равновесной среде невозможно. Для работы любого лазера (газового, жидкостного, твердотельного) требуется, чтобы рабочая среда лазера находилась в состоянии инверсной заселенности – таком состоянии, при котором количество электронов на высоколежащих уровнях энергии было бы большим, чем на ниже расположенных уровнях (такое состояние называется еще «состоянием с отрицательной температурой»). Получим соотношение, описывающее состояние с инверсной заселенностью в полупроводниках.

Пусть ε 1 и ε 2 оптически связанные между собой энергетические уровни, первый из которых находится в валентной, а второй – в зоне проводимости полупроводника (рис.2). Термин «оптически связанные» означает, что переходы электрона между ними разрешены правилами отбора. Поглотив квант света с энергией hν 12 , электрон переходит с уровня ε 1 на уровень ε 2 . Скорость такого перехода будет пропорциональна вероятности заселения первого уровня f 1 , вероятности того, что второй уровень пуст: (1- f 2), и плотности потока фотонов P(hν 12)

Обратный переход – с верхнего уровня на нижний, может происходить двумя способами – за счет спонтанной и вынужденной рекомбинации. Во втором случае взаимодействие кванта света с электроном, находящимся на уровне ε 2 , «заставляет» рекомбинировать электрон с испусканием кванта света, тождественного тому, который вызвал процесс вынужденной рекомбинации. Т.о. в системе происходит усиление света, что и составляет суть работы лазера. Скорости спонтанной и вынужденной рекомбинации запишутся как:

(3)

В состоянии термодинамического равновесия

. (5)

Используя условие 5, можно показать, что коэффициенты В 12 , В 21 и А 21 («коэффициенты Эйнштейна») связаны между собой, а именно:

, (6)

где n – показатель преломления полупроводника; с –скорость света.

В дальнейшем, впрочем, спонтанную рекомбинацию мы учитывать не будем, т.к. скорость спонтанной рекомбинации не зависит от плотности потока фотонов в рабочей среде лазера, и скорость вынужденной рекомбинации будет при больших значениях Р(hν 12 ) существенно превышать скорость спонтанной рекомбинации. Для того, чтобы происходило усиление света, скорость вынужденных переходов «сверху вниз» должна превышать скорость переходов «снизу вверх»:

Записав вероятности заселения электронами уровней с энергией ε 1 и ε 2 в виде

, (8)

получим условие инверсной заселенности в полупроводниках

т.к. минимальное расстояние между уровнями ε 1 и ε 2 как раз равно ширине запрещенной зоны полупроводника ε g . Это соотношение известно как соотношение Бернара-Дюрафура.

В формулу 9 входят значения т.н. квазиуровней Ферми - уровней Ферми отдельно для зоны проводимости F C и валентной зоны F V . Такая ситуация возможна только для неравновесной, а точнее, для квазиравновесной системы. Для формирования в обеих разрешенных зонах уровней Ферми (уровней, разделяющих заполненные электронами и пустые состояния (см. Введение)), требуется, чтобы время релаксации импульса электронов и дырок было на несколько порядков меньше времени жизни избыточных носителей заряда:

В результате неравновесный в целом электронно-дырочный газ можно рассматривать как комбинацию равновесного электронного газа в зоне проводимости и равновесного дырочного газа в валентной зоне (рис.2).


Рис.2. Энергетическая диаграмма полупроводника с инверсной заселенностью уровней. Заполненные электронами состояния заштрихованы.

Процедура создания в рабочей среде лазера (в нашем случае – в полупроводниковом кристалле) инверсной заселенности носит название накачки. Накачка полупроводниковых лазеров может осуществляться извне светом, пучком быстрых электронов, сильным радиочастотным полем, ударной ионизацией в самом полупроводнике. Но наиболее простым, экономичным и, в силу того, наиболее распространенным способом накачки полупроводниковых лазеров является инжекция носителей заряда в вырожденном p-n переходе (cм. методич. пособие “Физика полупроводниковых приборов”; туннельный диод). Принцип такой накачки понятен из рис.3, где приведена энергетическая диаграмма такого перехода в состоянии термодинамического равновесия и при большом прямом смещении . Видно, что в области d, непосредственно примыкающей к p-n переходу, реализуется инверсная заселенность – энегетическое расстояние между квазиуровнями Ферми больше, чем ширина запрещенной зоны.

Рис.3. Вырожденный р-п переход в состоянии термодинамического равновесия (слева) и при большом прямом смещении (справа).

Однако создание в рабочей среде инверсной заселенности является необходимым, но еще не достаточным условием для генерации лазерного излучения. В любом лазере, и в полупроводниковом – в частности, часть подводимой к прибору мощности накачки будет бесполезно теряться. И только когда мощность накачки превысит определенную величину - порог генерации, лазер начинает работать как квантовый усилитель света. При превышении порога генерации:

· а) резко возрастает интенсивность испускаемого прибором излучения (рис.4а);

· б) сужается спектральная линия излучения (рис. 4б);

· в) излучение становится когерентным и узконаправленным.

Рис.4. Рост интенсивности (слева) и сужение спектральной линии излучения (справа) полупроводникового лазера при превышении током порогового значения.

Для достижения пороговых условий генерации рабочую среду лазера обычно помещают в оптический резонатор. Этоувеличивает длину оптического пути пучка света в рабочей среде, облегчает достижение порога генерации, способствует лучшей фокусировке пучка и т.д. Из всего разнообразия типов оптических резонаторов в полупроводниковых лазерах наибольшее распространение получил простейший резонатор Фабри-Перо – два плоско-параллельных зеркала, перпендикулярных p-n переходу. Причем в качестве зеркал используются отшлифованные грани самого полупроводникового кристалла.

Рассмотрим прохождение электромагнитной волны через такой резонатор. Примем коэффициент пропускания и коэффициент отражения левого зеркала резонатора за t 1 и r 1 , правого (через которое излучение выходит наружу) - за t 2 и r 2 ; длина резонатора – L . Пусть на левую грань кристалла падает извне электромагнитная волна, уравнение которой запишем в виде:

. (11)

Пройдя через левое зеркало, кристалл и правое зеркало, часть излучения выйдет через правую грань кристалла, а часть отразится и снова пойдет к левой грани (рис.5).

Рис.5. Электромагнитная волна в резонаторе Фабри-Перо.

Дальнейший ход луча в резонаторе, амплитуды выходящих и отраженных лучей понятны из рисунка. Просуммируем амплитуды всех электромагнитных волн, вышедших через правую грань кристалла :

= (12).

Потребуем, чтобы сумма амплитуд всех волн, выходящих через правую грань, не равнялась нулю даже при исчезающе малой амплитуде волны на левой грани кристалла. Очевидно, что это может быть только тогда, когда и знаменатель дроби в (12) стремится к нулю. Отсюда получим:

, (13)

а с учетом того, что интенсивность света , т.е ; , где R 1 , R 2 - коэффициенты отражения зеркал – граней кристалла «по интенсивности», и, к тому же, , окончательно соотношение для порога генерации запишем как:

. (14)

Из (11) следует, что множитель 2Г, входящий в показатель экспоненты, связан с комплексным показателем преломления кристалла:

В правой части (15) первое слагаемое определяет фазу световой волны, а второе – амплитуду. В обычной, термодинамически равновесной среде - происходит ослабление (поглощение) света, в активной рабочей среде лазера это же соотношение следает записать в виде , где g - коэффициент усиления света , а символом α i обозначены все потери энергии накачки, не обязательно только оптической природы. Тогда амплитудное пороговое условие перепишется как:

или . (16)

Таким образом, мы определили необходимое (9) и достаточное (16) условия генерации полупроводникового лазера. Как только величина коэффициента усиления превыситпотери на величину, определяемую первым слагаемым (16), в рабочей среде с инверсной заселенностью уровней начнется усиление света. Сама же величина коэффициента усиления будет зависеть от мощности накачки или, что для инжекционных лазеров то же самое, от величины рабочего тока. В обычной рабочей области полупроводниковых лазеров и линейно зависит от величины рабочего тока

. (17)

Из (16) и (17) для порогового тока получим:

, (18)

где через I 0 обозначен т.н. «порог инверсии» – значение рабочего тока, при котором достигается инверсная заселенность в полупроводнике. Т.к. обычно , первым слагаемым в (18) можно пренебречь.

Коэффициент пропорциональности β для лазера с использованием обычного p-n перехода и изготовленного, например, из GaAs можно рассчитать по формуле

, (19)

где Е и ΔЕ – положение и полуширина спектральной линии излучения лазера.

Расчет по формуле 18 дает при комнатной температуре Т=300К для такого лазера очень высокие значения пороговой плотности тока 5 . 10 4 А/см 2 , т.е. такие лазеры могут эксплуатироваться либо при хорошем охлаждении, либо в режиме коротких импульсов. Поэтому, как уже отмечалось выше, только создание в 1970 г. группой Ж.И.Алферова лазеров на гетеропереходах позволило на 2 порядка снизить пороговые токи полупроводниковых лазеров, что в конечном итоге и привело к массовому применению этих приборов в электронике.

Для того, чтобы понять, как этого удалось достичь, рассмотрим подробнее структуру потерь в полупроводниковых лазерах. К неспецифическим, общим для любых лазеров, и в принципе неустранимым потерям следует отнести потери на спонтанные переходы и потери на термализацию.

Спонтанные переходы с верхнего уровня на нижний будут присутствовать всегда, а поскольку излучаемые при этом кванты света будут иметь случайное распределение по фазе и направлению распространения (не будут когерентны ), то затраты энергии накачки на генерацию спонтанно-рекомбинирующих электрон-дырочных пар следует отнести к потерям.

При любом способе накачки в зону проводимости полупроводника будут забрасываться электроны, с энергией, большей энергии квазиуровня Ферми F С . Эти электроны, теряя энергию в столкновениях с дефектами решетки, достаточно быстро опускаются до квазиуровня Ферми – процесс, называемый термализацией. Энергия, потерянная электронами при рассеянии их на дефектах решетки, и есть потери на термализацию.

К частично-устранимым потерям можно отнести потери на безызлучательную рекомбинацию . В прямозонных полупроводниках за безызлучательную рекомбинацию отвечают обычно глубокие примесные уровни (см. «Фотоэффект в однородных полупроводниках»). Тщательная очистка полупроводникового кристалла от примесей, образующих такие уровни, уменьшает вероятность безызлучательной рекомбинации.

И, наконец, потери на нерезонансное поглощение и на токи утечки можно значительно уменьшить, применяя для изготовления лазеров гетероструктуры.

В отличие от обычных p-n переходов, где справа и слева от точки контакта располагаются одинаковые полупроводники, отличающиеся только составом примесей и типом проводимости, в гетероструктурах по обе стороны контакта располагаются разные по химическому составу полупроводники. Эти полупроводники имеют различную ширину запрещенной зоны, поэтому в точке контакта будет наблюдаться «скачок» потенциальной энергии электрона (типа «крюк» или типа «стенка» (рис.6)).


Рис.6. Инжекционный лазер на основе двусторонней гетероструктуры в состоянии термодинамического равновесия (слева) и в рабочем режиме (справа).

В зависимости от типа проводимости полупроводников гетероструктуры могут быть изотипными (p-P; n-N гетероструктуры) и анизотипными (p-N; n-P гетероструктуры). Заглавными буквами вгетероструктурах принято обозначать полупроводник с большей шириной запрещенной зоны. Далеко не любые полупроводники способны образовывать качественные гетероструктуры, пригодные для создания на их основе электронных приборов. Для того, чтобы граница раздела содержала как можно меньше дефектов, компоненты гетероструктуры должны иметь одинаковую кристаллическую структуру и очень близкие значения постоянной кристаллической решетки. Среди полупроводников группы A III B V только две пары соединений отвечают этому требованию: GaAs-AlAs и GaSb-AlSb и их твердые растворы (см. Введение), т.е. GaAs-Ga x Al 1- x As ; GaSb-Ga x Al 1- x Sb. Усложняя состав полупроводников, можно подобрать и другие пары, пригодные для создания гетероструктур, например InP-In x Ga 1- x As y P 1- y ; InP- Al x Ga 1- x As y Sb 1- y . Инжекционные лазеры изготавливаются и из гетероструктур на основе полупроводниковых соединений A IV B VI , таких как PbTe-Pb x Sn 1- x Te; PbSe-Pb x Sn 1- x Se - эти лазеры излучают в дальней инфракрасной области спектра.

Потери на токи утечки в гетеролазерах удается практически полностью устранить благодаря разнице в ширине запрещенных зон полупроводников, формирующих гетероструктуру. Действительно (рис.3), ширина области d вблизи обычного p-n перехода, где выполняется условие инверсной заселенности, составляет всего 1 мкм, в то время как инжектированные через переход носители заряда рекомбинируют в гораздо большей по размерам области L n +L p шириной 10 мкм. Рекомбинация носителей в этой области не вносит вклад в когерентное излучение. В двусторонней N-p-P гетероструктуре (рис.6) область с инверсной заселенностью совпадает с толщиной слоя узкозонного полупроводника в центре гетеролазера. Практически все инжектированные в эту область из широкозонных полупроводников электроны и дырки там и рекомбинируют. Потенциальные барьеры на границе раздела широкозонных и узкозонного полупроводника не дают «растекаться» носителям заряда, что резко повышает эффективность такой структуры по сравнению с обычным (рис.3) p-n переходом.

В слое узкозонного полупроводника будут сосредоточены не только неравновесные электроны и дырки, но и бóльшая часть излучения. Причина этого явления заключается в том, что полупроводники, составляющие гетероструктуру, отличаются величиной показателя преломления. Как правило, показатель преломления выше у узкозонного полупроводника. Поэтому все лучи, имеющие угол падения на границу двух полупроводников

, (20)

будут претерпевать полное внутреннее отражение. Следовательно, излучение будет «заперто» в активном слое (рис.7), что существенно уменьшит потери на нерезонансное поглощение (обычно это т.н. «поглощение свободными носителями заряда»).

Рис.7. Оптическое ограничение при распространении света в гетероструктуре. При угле падения, большем θ, происходит полное внутреннее отражение от границы раздела полупроводников, составляющих гетероструктуру.

Все вышесказанное и позволяет получить в гетеролазерах гигантское оптическое усиление при микроскопических размерах активной области: толщина активного слоя , длина резонатора . Гетеролазеры работают при комнатной температуре в непрерывном режиме , а характерные плотности рабочих токов не превышают 500 А/см 2 . Спектр излучения большинства серийно-выпускаемых лазеров, в которых рабочей средой является арсенид галлия, представляет узкую линию с максимумом в ближней инфракрасной области спектра , хотя разработаны полупроводниковые лазеры, дающие видимое излучение, и лазеры, излучающие в далекой инфракрасной области с .

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

© 2024 educent.ru - Портал полезных знаний для школьников и их родителей